

The life cycle of rifted margins

Harm Van Avendonk
University of Texas Institute for Geophysics
Austin TX

GeoPRISMS DLP seminar in the Pink Palace Memphis, TN November 12, 2011

Plate tectonics

Breakup of continents and seafloor spreading

Plate tectonics

Convergent plate boundaries

Plate tectonics

Some plates are all oceanic, others are part continental and part oceanic

Super continents:

Atlantic ocean

Pangea: 250-230 million yr

lapetus ocean

Rodinia: 1100-750 million yr

Nuna: 1800-1500 million yr

Alfred Wegener's idea (1911)

Oceans open and close.

Wilson cycle:

Mantle convection

Mantle turns over to remove the heat from the core.

Drag at the base of the plates can drive plate tectonics, including rifting and subduction.

Supercontinents form when there is little rifting for some millions of years.

Mosaic of continents

Cratons

Mountain belts

Coastal plains

Oceans

BERING SEA

ARCTIC

OCEAN

Greenland Shield

OCEAN

Coastal

plain

Wilson cycle

Appalachian terranes are bounded by sutures

Studies of continental margins

We use geophysical methods to study rifted margins that lie offshore beneath oceans and sediments.

Marine seismic data

Sea-going expeditions

R/V Marcus Langseth

R/V Maurice Ewing

Seismic reflection data

Seismic reflection data

We see the same structures in mountain belts (Alps) and continental margins

Offshore seismic image

Onshore geology

Il Motto/Ortler nappe: Manatschal et al. (2007)

North Sea: from P.Covie (2004)

We see the same structures in mountain belts (Alps) and continental margins

Offshore seismic image

Onshore geology

Il Motto/Ortler nappe: Manatschal et al. (2007)

North Sea: from P.Covie (2004)

A wider view of the Alps

Tasna: Ocean-continent transition exposed in the Alps

Florineth and Froitzheim 1994, Manatschal et al. 2007

Seismic studies across the margin

The oceanic crust

The oceanic crust

Debris flows

Tectono/sedimentary breccia

Ocean Drilling Program

Lusigal 12 reflection seismic section

20

Seismic profiles:

Crustal thickness variations give us a record of stretching and continental breakup

Map of Canadian and West-European margins

Computer animation of continental breakup:

Computer model of continental breakup:

Continental rifting to seafloor spreading

Continental plates are stretched and faulted at the margins during extension.

Subduction of seafloor to continental collision

Collision animation

Exchange of water, CO2 at subduction zones

Volcanoes release fluids and gases that have traveled from the subducting plate through the mantle wedge, into the atmosphere

Evidence from seismology for subduction of oceanic plates

Faulting and bending of a subducting ocean plate

Water and melt transfers from downgoing oceanic plate to the mantle wedge.

Geodynamic Processes at Rifting and Subducting Margins

Serpentinite forms when water reacts with mantle dunite:

The strength of mantle rocks Dunite is more difficult to break than serpentinite

Maximum differential stress for serpentinized and unaltered mantle rock

Subduction zone with wet mantle wedge

From subduction to collision

Sutures in continents are weak zones that break during the next Wilson cycle.

Example: The Appalachians and the Atlantic margin.

Thank you!

