

Great earthquakes and new insights into subduction seismogenesis

Heather R. DeShon Southern Methodist University GeoPRISMS DLP

Georgia Southwestern State University Feb. 27th, 2013

The earth, the very emblem of solidity, has moved beneath our feet like a thick crust over a fluid.

- Charles Darwin reflecting on experiencing the Feb. 1835 great Concepción, Chile earthquake *The Voyage of the Beagle, 1845*

Outline

- Subduction megathrust faults and the seismogenic zone
- Subduction cycles and deformation
 - Outstanding questions
- Great earthquakes
 - Recent insights
 - Future concerns
 - New models

Zandt, 2002

The Active Earth

<u>Plates</u> - rigid lithosphere riding on a convecting mantle

3 Types of Plate Boundaries

Global distribution of convergent boundaries

End Member Models of Subduction Zones

Ceramie-assamils convergence

Subduction is part of the mantle convection system

Subduction and arc volcanism are great water recyclers

Subduction and arc processes help build continental crust

Subduction megathrust faults generate great earthquakes & tsunami

2011 Japan tsunan

1960 Chile earthquake

The megathrust and tsunamis

Rupture dimensions and displacement

During an earthquake, slip spreads out from the initiation point (hypocenter) over a finite distance.

Seismologists calculate seismic moment (a measure of energy) by

 $M_o = A * D * \mu$

Moment = fault area * average displacement * rigidity

Subduction zones generate the largest earthquakes because megathrusts are long, dipping structures with big fault areas

Great earthquakes $-M_W \ge 8$

Magnitude 8.0 and Greater Earthquakes Since 1900

Source: USGS

Magnitude does NOT scale with fatalities

Fatalities from Magnitude 8 and Greater Earthquakes Since 1900

Source: USGS

NSF GeoPRISMS Program

GeoPRISMS investigates the coupled geodynamics, earth surface processes, and climate interactions that build and modify continental margins over a wide range of timescales (from s to My), and cross the shoreline, with applications to margin evolution & dynamics, construction of stratigraphic architecture, accumulation of economic resources, and associated geologic hazards and environmental management.

Two broadly integrated initiatives

• Research at Primary Sites & through Thematic Studies

A Relevant SCD Key Question

What governs the size, location and frequency of great subduction zone earthquakes and how is this related to the spatial and temporal variation of slip behaviors observed along subduction faults?

Ide et al. 2007

Unzipping the Sunda subduction zone

2004-2013

Schematic diagram of a focal mechanism

Focal Mechanisms

Seismologists represent motion along a fault using lower hemisphere projections – **beachballs**

Reverse faults, like subduction megathrust faults, have the colored quadrant centered in the circle

USGS, 1996

Unzipping the Sunda subduction zone

2004-2013

Backprojection Models: Watching slip happen

Moment rate function

Ishii et al., 2005

Alex Hutco

The 2004 tsunami

>250,000 fatalities

Run-up heights >4 m

 Tsunami last longer than earthquake shaking

2004 M_W 9.2 megathrust earthquake, 2007 M_W 8.4 megathrust earthquake & 2010 M_W 7.8 tsunami earthquake

2005 M_W 8.7 Nias earthquake & Afterslip

Hsu et al., 2006

Largest intraplate earthquakes ever recorded

2012-Magnitude 8.6 and 8.2 OFF W COAST NORTHERN SUMATRA

Gut reaction: These intraplate earthquakes were caused by strike-slip faulting within Indian Plate oceanic lithosphere. N – S oriented fracture zones project into the area of the earthquakes and are the likely faults offset during these events.

Aftershocks and backprojection results soon tell a different story

2010 M_W 8.8 Maule, Chile earthquake

Interseismic plate coupling – predictive value?

Moreno et al., 2010

2011 M_W9.0 Tohoku-oki, Japan, earthquake

Slip in the 2010 Chile and 2011 Japan events

Maximum slip is ~50 m in the Japan earthquake!

Lay et al., 2012

Part of houses swallowed by tsunami burn in Sendai, Miyagi Prefecture (state) after Japan was struck by a strong earthquake off its northeastern coast Friday, March 11, 2011.

New York Times

The tsunami waves traveled far inland, the wave of debris racing across the farmland, carrying boats and houses with it.

The Future: Cascadia

History of earthquakes: the turbidite record

A. Full or nearlyfull rupture,19 events

B. Mid-Southern rupture, 3-4 events.

C. Rupture from central Oregon southward, 10-12 events. D. S Oregon/N California events, minimum of 7-8 events.

Chris Goldfinger, OR State

Tremor recurrence varies along Cascadia

Brudzinski and Allen, 2007

Tremor lies downdip of the seismogenic zone

Hyndman et al., 1995; Wech and Creager, 2011

Summary

- Each new earthquake brings further insight into the seismogenic zone
- Fault complexity may be related to variable frictional stability conditions along the fault
- Fault behavior may vary from seismic cycle to seismic cycle

Acknowledgements

- NSF GeoPRISMS and Margins program
- Collaborators: Susan Bilek, Susan Schwartz, Cliff Thurber, Bob Engdahl, Jeremy Pesicek, Haijiang Zhang, Sri Widiyantaro, Wolfgang Rabbel, Melissa Driskell, Shishay Bisrat

6 subduction megathrust earthquakes over the last 106 years account for over half of the energy released during that time.

