Recovering the Long-term
Paleoseismic-tsunamic
Record by Scientific Ocean Drilling (IODP)

HOW DO WE DO THIS?

WHERE DO WE DO THIS?







# Trench-axis Turbidite Deposits Expected to Register Both Aleutian and Alaskan Sources





## Are Forearc Growth Structures Recorders of High-magnitude Paleoseismicity?



#### Are Growth Structures in Forearc Basins Recorders of High-magnitude Paleoseismicity?



### Are Many/Most Slope Failures Launched By High-magnitude Megathrust Shaking?



Harder et al., 2010 (G-cube)

### Retrogressive Failures (i.e. breaking later farther up slope) and the Recording of Successive High-Magnitude Earthquake Shaking



#### Mass-Transport Deposits (MTDs) and the Recordering of High-Magnitude Forearc Shaking



#### WHERE TO GO?



Alaska Setting for the Disastrous 1946, Trans-Pacific, Scotch Cap Tsunami.

A Target Area to Study the Launching of Humongous Tsunamis by:

Slope-failure?

Near-Trench, up-dip Rupturing?









To Present Data, Ideas, Concepts and Strategize About

How We Recover and Read the Offshore Paleoseismic-tsunamic Record of the Aleutian, Alaska, Cascadia, and Hikurangi Subduction Zones