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Summary

After decades of work, Central Atlantic plate reconstructions are still debated in 
the literature (Schettino and Turco, 2009; Labails et al., 2010).

The Central Atlantic imposes important boundary conditions on the Mesozoic 
evolution of the Gulf of Mexico

New Basement Type Maps

• Published reflection and refraction data, potential 
field data and field observations 

Refined Tight-fit Pangaea 
Reconstruction

• Palinspastic restoration of crustal thickness grid 
constrained by refraction and receiver functions (e.g. 
Dunbar and Sawyer, 1989)

Rift to drift kinematics based on 3D 
non-rigid continuum plate models and 
linking ECMIP and CAMP events 
(Kneller et al., submitted to C&G)

Explore multiple scenarios for 
Jurassic seafloor spreading
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Comparison of Models at Maximum Closure

Schettino and Turco, 2009

Labails et al., 2010
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Maus et al., 2009

Holbrook et al., 1994; Talwani et al., 1995; 
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Nomade et al., 2007

Hypothesis for Breakup Timing: Linking ECMIP and CAMP  Events
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Diachronous initiation of seafloor spreading is inf erred from Newark Supergroup 
stratigraphy (e.g. Withjack et al., 1998).

Diachronous localization of extensional strain may also contribute to a diachronous end 
to syn-rift extension in the proximal part of the s ystem

Yucatan

North America

?

?

?

Olsen (1997)

Newark Supergroup and Rift to Drift Kinematics



Continental Crust of Plate A Continental Crust of Plate B

Overlap

Localization Boundary2) Rigid Reconstruction

Original node locations
Restored node locations

Linking Plate Kinematics to 3D Crustal Deformation
• 3D Pure Shear Deformation with Mass Conservation

• Particle displacement is along Euler Pole Flow lines and 
is a function of overlap and integrated extension from both 
plates.

• Localization controlled with prescribed boundaries.

• Airy Isostasy (No Flexure), No Erosion, No 
Sedimentation

• The goal is capture plate-scale lateral strain and crustal 
thinning not detailed subsidence

Kneller et al., submitted to C&G

3D Deformable 
Lagrangian 
Continuum 

3) Non-Rigid Reconstruction

1) Present Day
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Conclusions
Accurately mapping the distribution of magmatic crust is 
essential for constraining Central Atlantic plate kinematics.

Recently published plate models are inconsistent with 
geologic and geophysical observations, include unrealistic 
gaps and cannot restore extended crust to a reasonable 
initial thickness.

Palinspastic restorations constrained by receiver functions 
and refraction data closely match restored refraction lines 
and improve tight fit reconstructions.

Inverse continuum models linked to plate kinematics can 
restore extended crust to a reasonable initial thickness if 
extension initially occurs over a wide zone and then 
subsequently localizes in the distal part of the system

The occurrence and timing of diachronous breakup 
inferred from the Newark Supergroup can be produced  
with continuum models if 

• the ECMIP formation begins at peak CAMP time

• transform motion occurs between southern 
Grand Banks and West Africa

The diachronous end to syn-rift extension in the so uth 
may be associated with early localization of extens ional 
strain

A range of kinematic scenarios with different ridge jump 
timing are permissible during the Jurassic.  Our preferred 
scenario involves a ridge jump at 180 Ma.


