The Afar Rift Consortium

University of Bristol University of Oxford University of Cambridge British Geological Survey University of Rochester University of Auckland, NZ

NATURAL ENVIRONMENT

- Opportunistic programme following start of dyking in the Dabbahu magmatic segment
- First such episode in the satellite era
- NERC 'Urgency' grant got equipment in the field within 2 weeks
- Afar Rift Consortium conceived soon after

Programme structure

- Themed around 5 inter-disciplinary working groups
- A: where melt forms and ponds in the crust and mantle and how this correlates with zones of lithospheric stretching
- **B: what** the composition of magma is and how it evolves
- C: when previous eruptions have occurred and the time scale of magma evolution
- D: how magma moves through the crust and mantle (kinematics)
- E: why magma moves through the crust and mantle (dynamics)

Where ...

- Seismic tomography & receiver functions
- Magnetotellurics
- Links to petrology, remote sensing, seismicity, gravity, shear-wave splitting,

What ...

- ... is down there?
- Nature and relationships of magma, magma genesis and magmatism
- Modern petrology and geochemistry
- Inferences on volcanic processes and eruption mechanisms
- Relationships with all other groups e.g. physical properties of magma, modelling thermal evolution

When ...

- Eruptive history of Dabbahu magmatic segment and the timescales over which magmas evolved
- Isotopic chronometers
- Combine with other information to get time-stratigraphic framework to constrain rates of magma emplacement and eruption

How ...

- ... does melt move through the crust and lithosphere?
- ... does the brittle crust respond?
- inSAR
- · GPS
- LiDAR topography
- Seismicity
- Shear-wave splitting

Why?

- Physical mechanisms responsible for lithospheric extension, magma movement, crustal segmentation and growth
- Integration of geophysical, geochemical and geological techniques
- Numerical and analogue modelling

also

- Advanced remote sensing to map lithology at multiple scales
- LiDAR and hyperspectral imaging
- Mapping of faults, features of flows
- Palaeomagnetic sampling
- Satellite data on eruptions (gases, temperatures, extrusive mapping)
- Updated geological map with GIS

- 6 year programme, coming to an end
- 3 main field seasons, many other visits to service and move equipment
- Shared resources, data with other groups (US, French)
- Interested in future collaboration
- 7 PhD students, ~4 Post-Docs
- Several AAU Project Partners had research periods in UK Universities

Volcanology sampling sites

Where our equipment is

Volcanology

sampling

sites

Where our equipment is

Volcanology

sampling

sites

Where our equipment is

Volcanology

sampling

sites

MT site distribution

Profile across active segment

Joint interpretation

- Shallow conductor saline fluids in sediments and faulted and fractured basalt
- Evidence from geochemistry (and economic salt production from Danakil depression)
- Deeper conductors partial melt/ magma
- How much?
- Use petrology to constrain composition (Si, Na, H₂O, T)

Joint interpretation

- High conductivities imply wellconnected melt
- Infer melt fraction from bulk and melt conductivity using HS⁺ or parallel pathways models
- Parallel pathways consistent with OMP seismic anisotropy
- Minimum melt amount for given bulk conductivity - 12%
- ~200 km³ melt beneath profile

Joint interpretation

- Seismic evidence for melt in crust and upper mantle
 - Receiver functions
 - Surface waves
 - Anisotropy
 - Pn study
 - Tomography from seismicity data

Data and model fits

W

Two quantities deduced from the data, in two orthogonal directions (plotted red and blue)

Points are data, solid curves model predictions

Data plotted horizontally as a function of period – depth proxy

Comparison with inactive segment

