The lithosphere of the Appalachian orogen and the Atlantic passive margin: A seismological perspective

Karen M. Fischer

Department of Geological Sciences, Brown University

The big picture...

Constraining the lithosphereasthenosphere boundary

Combined inversions of Ps and Sp converted waves:

Rychert et al. (Nature, 2005 & JGR, 2007)

North America

- Dominant Sp period ~ 10 s
- Sharp LAB beneath younger continent:

H < 30-40 kmBest fits <= 20 km Volatiles or melt in asthenosphere

• No cratonic LAB phase: H > 50-60 kmConsistent with purely the mal gradient

Orogenic processes 50° DT - Dunnage/Piedmont Terr.

- What expression of collisional processes exists in the mantle lithosphere beneath the Appalachians?
- Are crustal terranes and sutures connected to mantle features?
- How do these relationships constrain models of lithospheric deformation during collision?

Orogenic processes 50° 🗖

- What expression of collisional processes existsnorian in the mantle lithosphere beneath the Appalachians?
- Are crustal terranes and sutures connected to mantle features?
- How do these relationships constrain models of lithospheric deformation during collision?

(Cook and Vasudevan, 2006)

(Hibbard et al., 2010)

(Hibbard, 2009 EarthScope Science Plan

Example from Canadian Shield

Orogenic processes 50° DT - Dunnage/Piedmont Terr.

 What expression of collisional processes exists in the mantle lithosphere beneath the Appalachians?

 Look for: Dipping reflectors Lateral changes in velocitys attenuation Gradients in anisotropy Offsets in LAB depth 30°

Rifting/Passive margin processes

- What expressions of rifting processes remain in a the mantle?
- Reactivation of orogenic structures?
- Given Mesozoic mafic magmatism, does a corresponding region of depleted, dehydrated, high viscosity mantle lithosphere exist?

 How do rifted continental and oceanic lithosphere compare? Edge-driven convection?
Offshore experiments needed!

Southern California

Sp CCP Stack Lekic et al. (Science, 2011)

- ~30 km of lithospheric thinning beneath Salton Trough and Inner Borderlands
- Lithospheric and crustal thinning very wellcorrelated with surface geology/deformation; vary over small length-scales
- High viscosity mantle lithosphere and localized strain

Southern California

Sp CCP Stack Lekic et al. (Science, 2011)

- ~30 km of lithospheric thinning beneath Salton Trough and Inner Borderlands
- Lithospheric and crustal thinning very wellcorrelated with surface geology/deformation; vary over small length-scales
- High viscosity mantle lithosphere and localized strain

Longterm evolution of surface topography

- What are the relative roles of lithospheric buoyancy (crust and mantle) and sub-lithospheric density anomalies and flow?
- How have they evolved over time? Need record of erosion and uplift combined with geodynamic modeling.

