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Presentation Notes

Eastern North America was built by a series of Paleozoic orogenies that were separated by rifting events. While the Appalachian mountains (allocthons obducted onto the Laurentian margin) are perhaps the most dramatic Paleozoic additions to North America, the Carolina and Avalon terranes are by far the largest additions.  These exotic arc-affinity terranes were accreted during the Alleghenian orogeny as Laurentia collided with Gondwana at ~290 Ma, forming Pangea.  The Carolina terrane appears to span hundreds of kilometers at a shallow level based on magnetic data (Fig. 2), but the size and distribution of this and other accreted terranes along eastern North America at depth in the crust and mantle lithosphere is very poorly known. Additionally, the natures of the contacts between them remain a subject of considerable debate. These orogenies may have juxtaposed terranes with highly variable rheologies next to one another. The architecture of sutures and rheological differences of juxtaposed terranes are important not only for the style of accretion, but also likely exert a large influence on subsequent rifting events.
The latest (Alleghenian) orogeny was followed by widespread Mesozoic extension beginning at ~230 Ma [Traverse, 1987], which culminated in the breakup of Pangea and the opening of the Atlantic Ocean at least 30 m.y. later. The earliest phase of extension left behind deep abandoned rift basins along eastern North America, northwest Africa and northeast South America, inboard of the successfully rifted margin. The South Georgia Basin is the largest of these abandoned rifts (Figs. 1-3). Very little is known about the evolution of Mesozoic rifting that led to the abandonment of the inboard basins.  It is not known, for example, how much extension these basins experienced, the style of that extension, or if they were active simultaneously with the eventually successful rift or if rifting jumped.  The volume of magmatism, and roles of inherited structure and magma in basin formation are also not known, though both undoubtedly influenced rifting. 
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Most of the extent of CAMP mapped from dikes and sills. What is subsurface distribution?
Offshore, the edge of successfully rifted margin associated with thick magmatic underplates. What is link between onshore rift basins and magmatism?
What is origin of this magmatism? different explanations make competing predictions for distribution of magmatism.
Is all of the magma extracted to form new crust? earliest seafloor spraeding anomalies are relatively slow here, so melt production could have outpaced extraction.
What are consequences of major magmatic event for lithospheric structure, rheology and longetivity?
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High-velocity bodies at
magmatic margins
Interpreted as mafic
synrift underplates...

...although debate continues
about volumes of new magma
versus pre-existing crust
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Off Newfoundland: magma Is scarce..
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The outer parts of the margin comprise wide regions of highly

thinned crust and exposed, serpentinized subcontinental
mantle.
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“Wide” versus “narrow” rifting?
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“Wide” versus “narrow” rifting?

Wide total zone of thinned continental crust

Van Avendonk et al., 2009
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« Common observation: magma-poor rifts are wider than
magma-rich rifts

 Many magma-poor and magma-rich margins defy simple
characterization as ‘wide’ or ‘narrow’

» Areas of the ENAM with comparable volumes of magmatism
have variable thinning profiles and modes of deformation
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Off Nova Scotia: a transition iIn magmati
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Off Nova Scotia: a transmon IN magmati
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..but the nature of this transition is not well-constrained by
existing geophysical data.



Along-rift changes in magmatism can be

Sharp along-strike change in mag@Q!HQ/Lr ~20 km
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Emergence and evolution of tectonic
and magmatic segmentation

Mid-ocean ridges Rifts

Keranen et al., 2004



Presenter
Presentation Notes
Tectonic and magmatic segmentation is fundamental property of mid-ocean ridges and many rifts. 
At mor, segments bound by transform faults and typically exhibit more robust magmatism at their centers than at their edges.
In rifts: segmentation may evolve over the rift. In early rifts appears to be defined at surface by border faults.  In mature rifts, defined by diking at the surface, mafic intrusions in the upper crust. 
-very very very few constraints on 3D structure of the crust/litho in rifts or at rifted margins to understand manifestation of these shallow features at depth in crust and lithosphere.


How does
segmentation
evolve from
the initiation
of rifting to
the formation
of a mature
mid-ocean
ridge?
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Segmentation of the magmatic margin
off the eastern US
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in other highly i /

. magmatic settings,

~ magmatism may
overwhelm melt
focusing mechanisms
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Segmentation of the magma-poor margin
off Newfoundland
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= Are we there yet?
When does mature seafloor spreading begin?
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Echos the observations of off-axis magmatism in Gulf of California
As Mark said, has consequences for thermal evolution of seds. Magma instrusion into seds invoked as a possible cause for big climate changes in the past.


Some key questions about
continental extension and
. What is the relafighdhifetween the style

of rifting and the volume and timing of
magmatism?

~+ What is the nature of the transition
= between magma rlch and magma poor




Abrupt thinning of the crust with
wide zone of thinned continental
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Existing sets of 2D crustal profiles show profound changes along strike between segments in magmatism, rifting style, etc, but we can’t connect the dots



Tomographic inversion of seismic refraction data on
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Most of the extent of CAMP mapped from dikes and sills. What is subsurface distribution?
Offshore, the edge of successfully rifted margin associated with thick magmatic underplates. What is link between onshore rift basins and magmatism?
What is origin of this magmatism? different explanations make competing predictions for distribution of magmatism.
Is all of the magma extracted to form new crust? earliest seafloor spraeding anomalies are relatively slow here, so melt production could have outpaced extraction.
What are consequences of major magmatic event for lithospheric structure, rheology and longetivity?
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East coast an excellent place to evolution of segmentation from onshore failed rift basins (which record earlier stages of riftgin) to the successfully rifted margin offshore.
-yellow- interpreted magnetic anomalies. jags indicate segmentation of the MOR offshore. How is it realted to the offshore margin and to rift basins onshore?
-how is this segmentation manifested in the crust and upper mantle?
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