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1. Introduction 5. New Studies in Ethiopia: the MER and southern Afar

We present an overview of the volatile systematics of the East Africa Rift System through an New studies of the volatile systematics of the EARS have focused on Ethiopia — the MER and southern
integrated approach utilizing geothermal fluids, groundwaters, phenocryst-bearing lavas and scoria, Afar) with extensive field collections undertaken in 2011/12. This expedition supplements in-house
and xenoliths. The tracers of prime interest are the noble gases (He, Ne and Ar), taking advantage of samples from Ethiopia and other regions of the EARS.

their chemical nertness and sensitivity to volatile provenance (crust and mantle, including SCLM .
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Our new studies have targeted both (a) hydrothermal fluids and groundwaters, and (b) lavas and xenoliths. The focus of
fluid-related studies 1s the He-CO,-N, 1sotope systematics of gas and water phase samples together with total gas and
water chemistry including stable isotopes (D/H and §'%0). The rocks (see figures above) will allow spatial comparisons
with fluids and give temporal controls on He-Ne-Ar-CO,-N, relationships. Some 1nitial results are given below.
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The above study summarizes published He-1sotope results up to 2006. The principal point to P § 0.06 -
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3. He-isotope studies in Rungwe, Tanzania

We targeted 31 lava and tephra samples from Rungwe Volcanic Province (RVP) for He-
1sotopes with a total of 52 individual analyses of olivine and/or clinopyroxene separates
(Hilton et al., 2011). He isotope ratios as high as 14.9 R, are the first observation of SHe/*He
ratios > >MORB 1n the Kenya Dome region, 1.e., south of the Turkana Depression. Xenoliths
from northern Tanzania gave *He/*He coincident with sub-continental mantle lithosphere.

Both CO, and N, are key volatile tracers —of source involvement, extent of mixing, and other
petrogenetic processes related to fluxing of volatiles to the surface. The 1sotopic composition of
each volatile phase (8'°C and 6'°N) as well as relative abundance characteristics (particularly to
He) provide constraints on EARS volatile provenance. The following plots are the first CO, and
N, 1sotope data on mafic crystals (olivine and clinoproxene) from the EARS, opening up the
exciting possibility of adding considerably to geothermal fluid CO, and N, data (the usual media

20 A R ' 16 — A | T — ] ] : o
O Noam s N Tanzaniaenolin - o [0 vemvomaen] o o - exploited for these measurements). Thus, we can now target regions devoid of geothermal activity.
I <|:|> E_”Tgwe % 14 L | O Rungwe
. [ iejo i = < Keijo 2
II{ 15 | © ;llj:”wé rusi 00 © - Ie) - | O Tuéuyu 1e+15 ° @ N-Ethiopia
L : .er xirusives — A Kiwira ; ol
x i EEE N ME:REE—HE 2 1217 | % Ngozi (Older Ext) o le+14 ;2 20 | 2 gjiEbt:uFt)i
o 10+ © e oA o ST Z | ] 1e+13 | L o
L R o> “ﬂg@m L‘{Q o o o 10r - . S o
% _ . *— ] T i KA i T fe+12} Q 45
® i v/ i -q-\‘ "’\N ke
mI 5 L ’_v vy Y ‘h\ i E 8- — O | 8 1e+11 | v?,
I SCLM-He | « - [ : o 10 |
_ (6.1+09R,). | Ll |
@ =— RNG-2 | 6 L ' ' ' @ N-Ethiopia M
o ) Y S Y R 0 24 6 s 10 12 14 ford [ ) onat 0
1 10 100 Her'He (RIR.) ol ors Eiopi | | | 5 , , , . .
e e clinopyroxene -6 -4 -2 0 2 4 6 8
[He] X 10-90m3STP/g A py -40 -30 -20 -10 0 10 815N (%0)
. . . 8"°C (%)
40 The Afrlcan Sup erplume — a reglonal lnﬂu €Nnce Carbon and nitrogen data (unpublished) on xenoliths from the Ethiopia/Djbouti region, north EARS. Left: C-isotope and CO,/*He relationships plotted vs.
| possible endmember compositions of MORB mantle (M), and organic (sedimentary) (S) and Limestone (L) — derived C. Binary mixing trajectories
D5°E { & 40°E The new He-isotope data provide un- between S-M and L-M are shown. Right: He-N isotope relationships for the same xenoliths showing binary mixing between MORB-like and plume
| ambiguous evidence for a deep mantle endmembers. Note: K = (He/N)yiors/(HEN)piume-
| Red Sea YEMEN . . .
- - contribution to magmagenesis at RVP. .
8. Concluding Remarks
®150
E B s The African Superplume - a tilted low- Continuing volatile studies (He-Ne-Ar-CO,-N,) on the EARS are targeting all regions with the following
I velocity seismic anomaly extending to guiding hypotheses 1n mind:
- the core-mantle boundary beneath
""‘ﬁé—'g{%[}fmﬁ southern Africa — 1s the likely source of (1) The high *He/*He provinces of the Main Ethiopian Rift and Afar Depression have unique volatile
80 these high *He/*He ratios. 1sotopic characteristics — can they be defined and exploited to map the spatial (and temporal) extent of
________ | . .
e the Ethiopian plume influence along the EARS.
erfiory and Quatemary . .
o g e High 3He/*He ratios at RVP and the MER
naian UJcean
oo Coton and Afar provide compelling evidence (2) Provinces of the Kenyan and Western rifts, 1.e., south of the Turkana Depression, also have unique
s o that the African Superplume extends volatile 1sotopic characteristics that can be defined and exploited to test involvement of SCLM and/or a
of 1000m contour . . . . . . .
i through the 670-km seismic discontinuity second plume 1n the petrogenesis of EARS magmas.
= Maior Rift Busin . . .
and provides dynamic support — either as
0 800 k . . o . o . o
. - asingle plume or via multiple upwellings (3) Can the volatile record test whether one/two/more plumes exist along the EARS and, 1f so, help
— for the two main topographic features determine if a genetic relationship exists between them.

of the East Africa Rift System.



