Plate boundary at the Alaska-Aleutian subduction zone

Anne Bécel¹
Donna J. Shillington¹, Jiyao Li¹, Mladen R. Nedimović², Geoffrey Abers³, Kathleen Keranen³, Matthias Delescluse⁴, Demian Saffer⁵, and Spahr C. Webb⁶

¹) Lamont-Doherty Earth Observatory of Columbia University, New York, USA
²) Dalhousie University, Halifax, Nova Scotia, Canada
³) Cornell University, Ithaca, USA
⁴) Ecole normale supérieure, Paris, France
⁵) Pennsylvania State University, University Park, PA, USA
Variations along the Alaska-Aleutian subduction zone

- Convergence changes along-strike
- Dramatic along-strike variations in the characteristics of the incoming plate
- Almost all of the Alaska/Aleutian subduction zone has ruptured in great earthquakes

Courtesy of Peter Haeussler. Rupture patches: Davies et al., 1981
Variations in seismicity & coupling around the Alaska Peninsula

- **Seismicity**: AEIC catalog
- **GPS**: Fournier and Freymueller (2007),
- **Slab depth contours**: Syracuse & Abers, 2006
Alaska Langseth Experiment to Understand the megaThrust

- 38-day cruise on the R/V Langseth (July-August 2011)
- 3700 km of MCS profiles: 2 x 8km long streamers, 6600 cu.in airgun array
- 2 wide-angle seismic profiles each with 21 OBS
- Onshore seismometers

Estimated rupture zones: Davies et al., 1981
Variations in the geometry and reflection signature of the plate interface

Downdip and along strike changes in slip behavior and seismogenesis

Outline

1. Along strike variations in sediment bending related faulting and hydration
2. Along strike variations at the trench, interplate reflectivity and decollement
3. Downdip variations in the interplate reflectivity
4. Major structure in the overriding plate within the Shumagin segment
I - Variations in bending faulting and hydration

Shumagin Gap

Semidi Segment

Bathymetry

Seismic Reflection

Shillington et al., in press
Along-strike variations in pre-existing structure of the downgoing plate

- Spreading rate at which oceanic plate was accreted
- Orientation of spreading fabric with respect to the trench
I - Variations in bending faulting and hydration

Shumagin Gap

- Variations in bending faulting and hydration
- Shumagin Gap
- Semidi Segment

Shillington et al., in press

Reduced upper mantle velocities - hydration
Serpentinite: ~16 wt% or ~1.8 wt% H₂O

Little variation in upper mantle velocities
Shillington et al., in press
Possible explanations for variations in intermediate depth seismicity

- Variations in amount of water in the plate available to drive dehydration embrittlement
- Variations in abundance and orientation of faults available to be reactivated

Shillington et al., in press
Impacts of sediment thickness variations

- Different styles of deformation in accretionary prism
- Thickness, continuity and downdip extent of coherent subducting layer varies

Bécel et al., EGU, 2012
3- Downdip variations in the interplate reflectivity

- reflection signal from the plate interface exhibits significant variations with depth

Li et al, AGU 2013, Li et al., in review
3 - Downdip variations in the interplate reflectivity

Li et al, AGU 2013; Li et al., in review
3 - Downdip variations in the interplate reflectivity

Li et al, AGU 2013; Li et al., in review

- Narrow band reflection from plate interface
- Wide band of multiple reflections from plate interface
- Averaged Frequency Spectrum

Subducted sediment layer and/or narrow thrust zone
- Consolidated and highly sheared sediment layer

- 3-5 km

- 100-250 m

Wide deformation zone
- Branching faults and/or fluid-rich layers
- Broad transition in seismic behavior from stick-slip sliding to slow slip and tremor
4 – Major structures in the overriding plate

From Lizarralde et al., 2002
1) Link between *remnant structures* in the downgoing plate, short-wavelength variations in *deformation* and *hydration* at the outer rise, and patterns of *seismicity* throughout the subduction zone (Shillington et al., in Press)

2) *Downdip variations in seismic reflection character* (narrow vs. wide band of reflections) that have implications for the fault structure and seismogenic behavior. Wide band of reflections may represent the downdip limit of seismogenic zone gradual transition from conditionally stable and stable-sliding regions (Li et al., in review)

3) Clear *reflections in the overriding plate* appear to delineate *one or more large faults* that cross the shelf and seem to branch at depth and connect to the plate interface. These large-scale structures imaged in the overriding plate are probably sufficiently *profound to play a major role in the behavior of the megathrust* in this area (Bécel et al., in prep.)