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Subduction Zone Slip Characteristics

 Magnitude-
frequency
relationships

e Spatial and
temporal patterns
of earthquake slip

e Spectrum of slip
velocities
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Factors contributing to spatial heterogeneity and slip variability

;

* Plate coupling |

e Large scale subduction zone M3
characteristics

e Sediments

e Subducting plate st
topograp hy po N Saffer, 2017

e Megathrust fluids



Slip Characteristics I: Magnitude-Frequency Relationships

Region Mega- b-value
thrust

Use b-value - relative abundance of large vs small earthquakes

Alaska Globally b-value ~1, with suggestion of negative correlation between b-value
Alenisns ' and shear stress levels on fault

Central
America

Chile
Japan
Kurile
Marianas
Peru

Sumatra

Tonga-
Kermadec

Using 40+ years of GCMT catalog for likely megathrust
events, we find b-values significantly < 1 for subduction
megathrust events, except for Marianas and Tonga-
Kermadec




Slip Characteristics IlI: Depth variation of moment release

e Significant
interplate
moment
release
occurs < 50
km depth

e Regional
variations
also exist
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Slip Characteristics IlI: Depth variation of moment release

e Examples:

and
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10-20 km

e Double
peaks for
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Slip Characteristics lll: Aftershock distribution

@ Interplate @ Upper plate

Intraplate/normal faulting aftershocks observed -
in particular when mainshock rupture reaches the
trench, likely due to static stress changes

A. Coseismic rupture reached the surface
W W W E

Slip Model Amplitude
or *Seafloor Uplift

Highest
‘@ GlobalCMT
@ 1SC Main
= Slip Profile
4—Trench
@ Outer-rises
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51 rate (mm/yr)

Asano et al., 2011

Hayes et al., 2014

* Interplate aftershocks common —
boundaries between areas of high slip
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Slip Characteristics IV: Spectrum of Slip Velocities
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 Wide range of time scales for
slip processes — seconds to
years now observed in
subduction zones

Rupture velocities range from
few km/s (typical
earthquakes), ~1 km/s
(tsunami earthquakes) to ~10s
km/day for some slow slip
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Slip Characteristics V: Locations of Slip Processes
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Slip Characteristics VI: Interaction of Slip Processes

Recent observations of slow slip processes before and after other large “typical” fault slip
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Factors contributing to spatial heterogeneity and slip variability

e Key issue — what controls plate coupling at a variety of scales?

e Large scale subduction zone characteristics
e Sediments

e Subducting plate topography
 Megathrust fluids



Plate coupling

e Earlyideas

* Young, fast subduction zones produced
the highest plate coupling and largest

earthquakes
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But... with more recent data, this
correlation does not hold up
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And comparisons between coupling and a number of
subduction zone parameters show fairly low correlations



Contributing Factors: Plate Curvature

flatter -> curved
= R IS Plate curvature — along-dip gradient of

OHistoriscal M=8.5 b ‘II"‘ j : . g -« N e g the dlp angle

earthquake contours

Several studies suggest great
earthquakes preferentially rupture
flatter segments of subduction zone

* may link to more homogeneous
shear stress distribution (Bletery et
al, 2016)




Contributing Factors: Sediments

e Majority of M 8+
(~75% of M 8.5+)
megathrust
earthquakes occur
at thick trench
sediment
subduction zones

e Spatial variations in
thickness, sediment
type, fluid content,
various reactions .
can impact detailed Thick (> 1.0 km)
slip patterns LT S

modied from ShoII et al., 2015



Contributing Factors: Smooth vs Rough Plate Interface

e Smoothness defined by
wavelength of features
seaward of trench smooth

— van Rijsingen et al, 2018

e Mw > 7.5 ruptures tend to
occur more often on
smooth subducting seafloor
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Contributing Factors: Subducting Topography

a) Cutting off

e \VVarious models

e Cutting off

e Could be mechanically possible, but
difficult, little geologic evidence

 Sliding over
e Unlikely given realistic strength estimates

e Breaking through

e Significant deformation above feature
supported by complex fracture structures
observed in geologic record and seismic
imaging

 May impede large ruptures

Wang and Bilek, 2014



Contributing Factors: Subducting Topography

Some examples: where ridges or seamounts subduct, have low coupling (or high creep) and
areas of smaller earthquakes, little/no coseismic slip in large earthquakes.
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Contributing Factors: Fluids

e High fluid content and
pressure often invoked
to describe areas of
aseismic slip

e 3D onshore MT survey
results:
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Conclusions

e Subduction megathrust fault have diverse slip behavior that can be
linked to a variety of factor

e Advances in geophysical data collection and analysis — progress in
understanding the seismic behavior and cycles in various regions

 Needs:
e complementary datasets

e coupled onshore and offshore seismic and geodetic data to better understand
strain accumulation process, especially in the near-trench area
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