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Sub-Topics In Geohazards
and Margin Stabllity
e Slow Slip Events
Earthquakes at rifts
e Tsunamis

e Volcanoes and Eruptions



Slow Slip Events (SSESs)



Geologic Background

 Recently discovered (~15 years)
 Not well understood

« Shallow portion of offshore plate
boundaries

e Slower than earthquakes
(weeks/years vs. seconds),
faster than typical tectonic plate
motion

e (Can be quasi-periodic and
last for days to months




Geologic Background

* Close spatial/temporal proximity
to damaging megathrust EQs

« Detected at many subduction
zones, mainly in the circum-
Pacific Rim:

e Japan
e Cascadia
« Costa Rica
e Southern Mexico
e Alaska
« New Zealand’s North Island
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o On shore GPS

Inland migration as subducting plate stresses

continental plate
o Offshore migration/jump during periods of elastic

rebound

 Absolute pressure gauges (APGS)
e Positive vertical movement during SSEs measured as
decrease In hydrostatic pressure from overlying
seawater




1. What are the physical processes and
properties leading to transient slow slip behavior at

subduction margins?

2. How can we better constrain SSEs using scientific

methods and how can we improve these methods
* Offshore geodesy

3. Can SSEs be used to predict large hazards, such as
megathrust and tsunami-generating events?

4. What role do fluids play?
Are SSEs stimulated by subducted fluid-rich sediments increasing
pore-fluid pressure at the slab interface, thereby reducing effective

stress?



Tsunami Hazards
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Tsunami Hazard
Assessment: Tectonic
control and geological
evidences

e How tectonic control can help rule or
reduce possible earthquake displacement
scenarios?

e What information we can get from
geological evidence (i.e. tsunami deposits)?

Depth of seismicity
® 0-33km
® 33-75km

Suleimant, et al., 2013



Volcanoes and
Eruptions



“‘Grand Challenges” In
\VVolcano Sclence




“‘Grand Challenges” In
\VVolcano Sclence

1. Forecast onset, size, duration, and

hazard of eruptions

NASEM, 2017
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“‘Grand Challenges” In
\VVolcano Sclence

1. Forecast onset, size, duration, and

hazard of eruptions
2. Quantify life cycles of global volcanoes

3. Develop organized volcano science

community to Improve scientific gains

from volcanic events

NASEM, 2017



Selsmic technigues allow us to monitor volcanic
unrest and to Image magma chambers
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Selsmic technigues allow us to monitor volcanic
unrest and to Image magma chambers
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| erupﬂ@n LP_.'E:DL.IFCE!S- i Deep, Iong_
o " Deep LP activity :
| 3 period

seismicity as
precursors to

Pressure transfer through
the volcano plumbing system

Daily event number

= eruption
) W Ry e i Tt E il N3¢ HTFY ] e Shapiro et al.
Dt;ep rhagr*r;atic (2017)

reservoir

Crater
Peak

Summit Crater

Summit

Migration of fluids using Vp/Vs
tomography

(Koulakov et al., 2018) L ) A Vp1Vs rato

10

distance, km distance, km

[ [ [ [ 1
8 1

1.5 1.68 1.72 1.76 1. .84 1.88

Vp/Vs ratio



Electromagnetic data are particularly sensitive to
fluids, melt, and elevated temperatures
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Fluid released from subducting slab promotes mantle melting beneath Mt. Rainier
McGary et al. (2014)




Geochemistry of eruptives clues us In to the slab
Inputs that promote mantle melting
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Even more technigues!

e INSAR (Global link between deformation
and volcanic eruption quantified by
satellite iImagery—-Biggs et al., 2014)

e Infrasound (Infrasonic early warning
system for explosive eruptions—Ripepe et
al., 2018)



Geohazards at Rifting
Margins



Along- Axis segmentation of Seismic
Hazards in Continental Rift zones
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Along- Axis segmentation of Seismic
Hazards in Continental Rift zones

Seismic Moment (10""Nm)
6 8 10 12 14 16 18 20 22

Differential Stress

Well- developed amagmatic
sector

I:l L. Tanganyika, Rukwa,
Malawi and Albert

m N. Tanzania Divergence
[1w. outboard Region

‘Jelly Sandwich” rheological model

Seismic Moment (10™Nm)
6 8 10 12 14 16 18 20 22

Significant and high magnitude clustering of Seismicity histogram and inferred yield stress
; . . . envelope for amagmatic E African rift segments
seismicity in the upper mantle Yang & Chen (2010)

ARU A=72.7° Az=14’ INDEPTH (Stack) A=69.2° Az=47°

(V=)
— Moho

Reflections

Record sections from event M3 (Z = 44 £ 4 km)
KUR A=74.7° Az=27° in the Malawi rift. Inferred PmS underside moho
' phase conversion highlighted

Yang & Chen (2010)

INDEPTH
(Stack)




Along- Axis segmentation of Seismic
Hazards in Continental Rift zones

No surficial expression of rifting

Very large (M,, > 7) earthquakes in the top 15
km

Aftershocks can extend to depths of ~35 km

Yang & Chen (2010)



Volcanism
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Overarching Questions

What factors control along-axis segmentation of seismic hazards?
Role of inherited structure, mantle processes

What is the interplay between magmatic and seismic processes at depth?
Implications for stress localization and magma transport

What role do volatiles play in determining rheological properties at depth?



Barker et al., 2018
Bell et al., 2010
Biggs et al., 2014
Cassidy et al., 2018
Delahaye et al., 2009
GeoNet.org.nz
Koulakov et al., 2018
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Manea et al., 2014

McGary et al., 2014
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