

2019 Synthesis & Integration TEI – Early Career Symposium

Mass fluxes

Overview, big-picture questions, and how to solve them

Richard M. Palin (Colorado School of Mines) Helen A. Janiszewski (DTM, Carnegie Science) Michelle Muth (University of Oregon)

Contributors

Assistant Prof. Richard M. Palin

Metamorphic petrology; fluid-rock interactions

Dr. Helen A. Janiszewski

Amphibious seismology; tectonophysics

Michelle Muth Igneous petrology; geochemistry

Overview – Mass fluxes in subduction zones

- Solid masses
 - Sediments
 - Crust
 - SOLM
 - Fragments of the upper plate
- Fluid masses
 - Seawater
 - Pore fluids
 - Structurally bound volatiles
- Any or all phases may 'come out' again

Zellmer et al. (2015) Geol. Soc. Lond. Spec. Publ.

Overview – Mass fluxes in rifted margins

 Solid masses

 Magma -> lava
 Xenoliths

 Fluid masses

 Extensive degassing via volcanism

Major measurement techniques comprise geophysics, isotope geochemistry, and petrology

Foley and Fischer (2017) Nature Geosci.

Techniques – Passive-source seismic studies

Amphibious seismic arrays

- Crustal, lithospheric, upper asthenospheric mantle scale imaging
- Uses earthquakes, or ambient noise, or other "natural" sources

Techniques – Active-source seismic studies

- Typically seismically image crust to upper mantle
- Involve using a seismic source, like airguns or explosives
- Higher resolution than passive imaging techniques, but covers a more limited area

Techniques – Magnetotellurics

- Electromagnetic geophysical method for inferring the Earth's subsurface electrical conductivity/resistivity
 - Measures natural geomagnetic and geoelectric field variation at the Earth's surface

- Complements seismic velocity measurements
 - Useful for discriminating between temperature/fluid/melt anomalies
- Can also be "active" or "passive" similar differences in resolution
 - From ~300 m depth (high frequencies) to >10,000 m depth (long-period sounding)

Techniques – Geodynamic modeling

- Top: fluid pathways (Wilson *et al.*, 2014)
- Right: stability of hydrous minerals in subducted crust (van Keken *et al.*, 2011)

OQ – What are the properties of the oceanic plate?

Imaging a **relatively dry** Juan de Fuca crust and mantle in Cascadia from active source seismics (Canales et al., 2017) Fluid-rich **bending faults** at middle America Trench from MT (Naif *et al.*, 2015) Deviations from conductive cooling observed in the Juan de Fuca plate (Janiszewski *et al.*, 2019)

OQ – How much sediment is subducted?

Variations in **thickness of subducting sediment** in Alaska correspond with variations in downdip seismic behavior (Li *et al.*, 2018).

Variations in **fluids and/or sediments** along the Hikurangi plate interface correlate with variable plate movement (Heise *et al.*, 2017).

OQ – What is the role of melt in rifting?

How much rifting requires melt vs. faulting (Accardo *et al.*, 2017)?

What are the dynamics of a **seafloorspreading episode** at the East Pacific Rise (Tan *et al.*, 2016)?

OQ – What magmatic architecture lies beneath volcanoes?

Left: **Magnetotelluric imaging** beneath Mt. St. Helens, Mt. Adams, and Mt. Rainier reveal a complex conductive melt region (Bedrosian *et al.*, 2018)

Right: **Seismic imaging** of magma architecture beneath Mt. St. Helens (Kiser *et al.*, 2018)

Techniques – Arc magma volatiles and geochemistry

- Direct methods for measuring volatiles
 - Melt inclusions/pillow rim glasses
 - FTIR, SIMS, EPMA
 - Gas monitoring/ sampling
 - Remote sensing
 - Fumarole sampling

Wallace (2005)

Techniques – Arc magma volatiles and geochemistry

- Indirect methods
 - Isotope/ trace
 element systematics
 - LA-ICP-MS,
 SIMS, EPMA
 - Experiments
 - Phase equilibria
 - Trace element partitioning
 - Volatile solubility

Nielsen and Marschall (2017)

OQ – Arc magma volatiles

- How are volatiles **stored** in the slab and **released** during subduction?
 - What is the fate of H_2O and CO_2 released into the forearc?
 - How does subducted S affect magma redox and the behavior of ore-forming metals, such as Cu?
- How does lower crustal differentiation affect the volatile contents measured at arc volcanoes?

Techniques – Direct sampling and analysis

- **Direct petrological examination** of solid materials before they enter the trench, or afterwards
 - Optical petrography/mineralogy
 - Mineral assemblages and reaction sequences
- Where can we get these samples?
 - Dredging from the sea floor
 - Ophiolites
 - Xenoliths in lavas
 - Exhumed crustal terranes

Techniques – Petrological modeling

Late-/post-Archean "cool" geotherm

Palin and Dyck (2018)

- Calculated phase equilibria (minerals, fluids, melt) stable at given pressure– temperature (*P*–*T*) conditions along slab-top surfaces or any depth within the slab
 - Forward and inverse modeling as functions of intensive (*P*, *T*, μ) or extensive (S, V, X) variables

Techniques – Petrological modeling

- More complex multivariate calculations involving internally consistent thermodynamic data and activity–composition relations for solid-solution phases
- Predict the effects of fluid
 expulsion from a subducted
 slab and infiltration into the
 overlying mantle wedge or
 lower/middle continental crust
 - Reactive transport

OQ – What actually goes down?

- Predicted mineral assemblages in subducted and metamorphosed mafic and ultramafic materials at asthenosphere–transition zone– lower-mantle conditions
 - How does near-ridge or near-trench metasomatism affect these equilibria?
 - How does this affect mass transport between the hydrosphere and interior?

any goes down:

Shirey and Shigley (2013)

OQ – How significant is subduction-erosion?

- What mass of overlying arc crust is transported beneath the continents during subduction erosion?
 - How much can be removed and where does it end up (i.e. distance from the trench)?

Azuma et al. (2017)

OQ – Relamination?

- Is lower crust really *that* mafic?
 - Hacker *et al.* (2011) suggest that felsic subducted crust can be re-added/laminated to the base of the overlying arc
- How can this be proven?
- Has this effect varied in efficacy throughout geological time?
 - Subduction has not always operated, and when it has, has not always done so in the same way

