The USGS's Vision (for subduction zone science)

Joan Gomberg, Nathan Miller

Gotta' have a plan....

Assembled by the GeoPRISMS Office Rice University, MS-121 6100 Main Street Houston, TX 77005 www.geoprisms.org **GeoPRISMS SCD asks** what governs great subduction zone earthquakes' characteristics and interface slip behaviors? How does plate boundary deformation evolve?

USGS asks can we distinguish between Cascadia megathrust earthquake recurrence models?

USGS asks can we distinguish between Cascadia megathrust earthquake recurrence models?

A holistic approach, linking studies Paleoseismology (geology) land-level changes tsunami deposition upper-plate faulting Landslides Offshore turbidites geomorphology & structure Modern seismic record Geodesy Physical/structural controls

E.g., using dendrochronology to determine the year shakingtriggered landslides dammed lakes.

GeoPRISMS SCD asks what governs great subduction zone earthquakes' characteristics and interface slip behaviors? How does plate boundary deformation evolve?

USGS invests in measuring transient slow fault slip on the seafloor, by

- hosting a multi-institutional workshop,

- installing 2 seafloor acoustic geodetic (GPS-A) sites in Cascadia

3 per monuments per site, serviced with Wave-glider 10 year lifetime, available for additional collaborations

with Universities of CA (Scripps), WA, HI, & Humboldt State

 researching seafloor pressure geodetic measurement methods with Universities of WA, Texas, Columbia, NIWA (New Zealand), JAMSTEC & NEID (Japan) **GeoPRISMS SCD asks** what governs great subduction zone earthquakes' characteristics and interface slip behaviors? How does plate boundary deformation evolve?

USGS asks can we observe slip over millenia (*e.g.*, at the bottom of lakes)?

Deposit from M7 11/30/18 Anchorage earthquake

Deposits from historic and pre-earthquake (not visible in photo)

with University of Ghent

GeoPRISMS SCD asks how are volatiles, fluids, and melts stored, transferred, and released? What geochemical products, from mantle to surface reservoirs, influence continental crust formation?

USGS & GeoPRISMS address these questions collaboratively in Cascadia & Alaska.

Collaborative Research:

Kerry Key (Scripps Institution of Oceanography) and

Ninfa Bennington (University Wisconsin-Madison)

Magnetotelluric and Seismic Investigation

of Arc Melt Generation, Delivery, and

Storage beneath Okmok Volcano

GeoPRISMS SCD asks how are volatiles, fluids, and melts stored, transferred, and released? What geochemical products, from mantle to surface reservoirs, influence continental crust formation?

USGS monitors and characterizes volcanic processes; e.g.

infrasound constrains a shallow source of April, 2016 explosions at Cleveland Volcano, Alaska

Observed & Modeled Infrasound Moment Tensor Components

with Carnegie Institution, Connecticut College, University of Alaska Fairbanks **GeoPRISMS SCD asks** about critical feedbacks between surface processes and subduction zone mechanics and dynamics?

USGS asks interactions among upper plate offshore structure and interface properties & slip?

Tsunamigenic mega-splay fault?

Seismogenic plate boundary

CASCADIA NORTH AMERICAN PLATE

QUEEN CHARLOTTE FAULT

JUAN DE FUCA PLATE

Science for a changing world

Coastal/Marine Hazards and Resources Program Subduction Zone Marine Geohazards Project: 2018-2023

ALASKA

CARIBBEAN (Puerto Rico, U.S. Virgin Islands)

CARIBBEAN PLATE

COCOS PLATE

A 5-year USGS Coastal/Marine Hazards and Resources Program focus on subduction zone marine geohazards: 2018-2023

Products		
Hazard assessment	3D fault and geologic model Tsunamis M>=6 (4x2 km rupture area) Megathrust	
Megathrust & upper plate rupture simulation	Upper plate faults	
End-member surface deformation models	Quaternary fault and fold	
Coastal uplift/subsidence	database	
Submarine landslide	Slip rates and slip budget	
	Extend QFFD to offshore	
Recurrence History	Deformation & structure map (orientation of structures)	
Lake paleoseismology record Tsunami deposit dates	Improve tsunami deposit & inundation map	
	Seismic reflection atlas	
Improved turbidite dating precision		
Event response plan	Comprehensive Bathymetry	
	Existing MB compilation	
Pre-event baseline data	Backscatter	
Rapid response OBS for aftershcocks	Seep distribution	
Post-event seafloor mapping and coring (co-seismic deformation, turbidites) Rapid-response coastal uplift and tsunami mapping	Sediment properties	
· · · · · · · · · · · · · · · · · · ·	Quaternery sedimentation distribution map	
Drilling targets	Quaternery basin map	
Alaska	Site response & Vs map	
Cascadia	Hydrate/BSR map	

2018-2019: Comprehensive multibeam coverage of the Cascadia forearc

[P. Dartnell, USGS]

- 2018 survey on NOAA Ship Rainier
- More mid-water + deep work in 2019

Pre-2018 gaps

2018-2019: High resolution, systematic MCS survey of the Cascadia forearc

- Do potentially tsunamigenic upper plate structures rupture with the megathrust?
- How do along strike variations in the morphology and structure of the overriding plate relate to possible segmentation of the megathrust?
- How is sediment delivered and redistributed across the continental shelf and slope?
- Where are the most active upper plate faults located?

Co-op with Humbolt State University

2018-2019: High resolution, systematic MCS survey of the Cascadia forearc

2018-2020: High-resolution + large source long-streamer MCS + OBS

Do potentially tsunamigenic upper plate structures rupture with the megathrust?

How do along strike variations in the morphology and structure of the overriding plate relate to possible segmentation of the megathrust?

How is sediment delivered and redistributed across the continental shelf and slope?

Where are the most active upper plate faults located?

2020: Long-streamer/large source MCS

- Carbotte et al. on R/V Langseth
- 15 km streamer, 6600 cu. in array

2019: High-res MCS

- USGS led
- R/V Rachel Carson via co-op with UW
- ~400 m streamer, 6 kJ sparker

Multi-resolution, systematic seismic survey of the Cascadia forearc

How well does the turbidite record capture earthquake recurrence? How does the forearc respond to earthquake shaking?

High-resolution Vs from active-source OBS data

[Zhu et al.]

Multi-resolution, systematic seismic survey of the Cascadia forearc

Beyond Cascadia....

Queen Charlotte Fault

CASCADIA

[Brothers et al., EOS, 2017]

NORTH AMERICAN PLATE

Puerto Rico Trench

CARIBBEAN (Puerto Rico, U.S. Virgin Islands)

CARIBBEAN PLATE

OUEEN CHARLOTTE FAULT

ALASKA

JUAN DE FUCA PLATE

PACIFIC PLATE

Alaska Amphibious Community Seismic Experiment

Building a rapid-response OBS capability

- Building a fleet of new instruments designed for rapid response experiments
- Engineering partnership with WHOI
- Instruments will be made available for academic projects of US national interest

18" (457 mm)

USGS's focus on hazard and risk complements NSF's broader scientific focus.

From science to risk ... we gotta' plan.

Science for a Risky World—A U.S. Geological Survey Plan for Risk Research and Applications

Products	Description	Scientific Input	Application
High-resolution hazard maps	Maps of expected neighborhood-scale variations in earthquake shaking and ground-failure, tsunami inundation, landslide potential, volcanic eruptions and lahars	High-resolution topography, onshore and offshore; three dimensional (3-D) models of Earth's structure; well- characterized faults, unstable slopes, active volcanoes	Building design codes, prioritized retrofitting, urban planning, and evacuation routing
Simulations	Science-based scenarios conveying hypothetical subduction zone events	Geologic field and laboratory studies, chronologies of past subduction zone events	Improved mitigation strategies
Warning systems	Advance notice of strong earthquake shaking, volcanic eruptions, tsunamis, and landslides	Multidisciplinary monitoring systems, onshore and offshore	Rapidly implemented life- and property- saving measures
New types of forecasts	Updated projections of aftershocks, landslides and ground failures, volcanic lahars and ash clouds	Rapidly acquired satellite and surface measurements	Safer, faster, and more cost-effective response and recovery
Novel assessments of cascading subduction zone events	Likelihoods of landslide-triggered tsunamis; earthquake-induced coastal land-level changes, flooding and erosion	Computer models simulating linked processes	Rapid and effective mitigation, response and recovery

Examples of science to risk mitigation.

Earthquake shaking science guides URM retrofit prioritization

50-60% CAKE

40-509

10-145%

40-50%

U

20-30%

LAKE WASHINGTON

122°15

Strength

60.80%

60-80% 80-110%

40-50% O

0

40-50%

1:25,000

30-409

110-145

Volcano lahar science guides warning system & evacuation routing

Unreinforced Masonry (URM) Retrofit Program Development **Frequently Asked Questions**

122°20' Longitude (°W)

Tsunami science guides evacuation routing & coastal development

10x Ventical Exaggeration

PROBABILISTIC TSUNAMI WAVE HEIGHTS, PROBABILISTIC TSUNAMI WAVE HEIGHTS, SEASIDE, OREGON

Tsunami Wave

Height (meters)

TSUNAMI **EVACUATION**

ROUTE

USGS's Vision is built on partnerships!

PRIVATE COMPANIES, FOUNDATIONS

MEXICO

CANADA

CARIBBEAN

NEW ZEALAND

JAPAN

CHILE