The USGS’s Vision (for subduction zone science)
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GeoPRISMS SCD asks what governs great subduction zone earthquakes’ characteristics
and interface slip behaviors? How does plate boundary deformation evolve?

USGS asks can we distinguish between Cascadia megathrust earthquake recurrence models?

<300 yr
recurrence recurrence
estimates: estimates: 2/ 500530 yr
onshore tsunami 200-530yroffshore turbidite L.
& coastal | & sediment iy 10200 yr
uplift/subsidence 500-600 yr record /
record | 300-380 yr
400-500 yr ;
pLO-BO $920-240 yr



USGS asks can we distinguish between Cascadia megathrust earthquake recurrence models?

A holistic approach, linking studies

Paleoseismology (geology)
land-level changes

tsunami deposition
upper-plate faulting
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E.g., using dendrochronology to determine the year shaking-

triggered landslides dammed lakes.

4-0000? 1200000

1600000

1 3000?0

1000 D?U

700000

400000

100000

Correlated against reference —>
Klickitat Lake dammed 1751.

~ Growth anomaly

— Klickitat™— Marys Peak

) .') il

1700 1800 1900 2000
Year

with Universities of Oregon &
Arizona, DOGAMI



GeoPRISMS SCD asks what governs great subduction zone earthquakes’ characteristics
and interface slip behaviors? How does plate boundary deformation evolve?

USGS Invests in measuring transient slow fault slip on the seafloor, by

- hosting a multi-institutional workshop,

- installing 2 seafloor acoustic geodetic (GPS-A) sites in Cascadia

3 per monuments per site, serviced with Wave-glider
10 year lifetime, available for additional collaborations

with Universities of CA (Scripps), WA, HI, & Humboldt State

-researching seafloor pressure geodetic measurement methods
with Universities of WA, Texas, Columbia, NIWA (New
Zealand), JAMISTEC & NEID (Japan)




GeoPRISMS SCD asks what governs great subduction zone earthquakes’ characteristics
and interface slip behaviors? How does plate boundary deformation evolve?

[USGS asks can we observe slip over millenia (e.g., at the bottom of lakes)?
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GeoPRISMS SCD asks how are volatiles, fluids, and melts stored, transferred, and

released? What geochemical products, from mantle to surface reservoirs, influence
continental crust formation?

USGS & GeoPRISMS address these questions collaboratively in Cascadia & Alaska.

The iMUSH Team ~ Report from the Field Collaborative Research:

The iMUSH team includes Geoffrey A Abers®, Olivier Bachmann®, Paul Bedro
Esteban Bowles-Martinez®, Michael A Clynne*, Kenneth C Creager', Kayla C

Margaret B Glasgow, Jisngang Han', Steven M Hansen, Graham ] Hill e Tl of Arc Melt Generation, Delivery, and
Michael Mann®, Xiaofeng Meng', Seth C Moran®, Jared Peacock®, Brandon Schmandt®, Adam Schultz®,
Storage beneath Okmok Volcano

Ly i~ Magnetotelluric and Seismic Investigation
4, Roger P Denlinger®,

Thomas W Sisson®, Roque A Soto Castaneda®, Weston A Thelen, John E Vidale', Maren Wanke®

"University of Washington, *Cornell University, *ETH-Zurich, ‘USGS, *Oregon State University,
“University of New Mexico, "University of Canterbury, "University of Arizona, "Rice Uniwersity

IMUSH is funded by NSF-GeoPRISMS, NSF-Earthscope with substantial in-kind support from the USGS. e L e -

o e
 of Mount St. Helens, WA, to follow up on
 mew findings from the IMUSH deployments

- «:m: with 3C constraints on source
.

instalenion of @ magnetotefuric station bn the Okmok Caldera.

14 . mmmwumm7 - = Sring 2017 lnaum No. 38 GePRISMS Newsletter + 15



GeoPRISMS SCD asks how are volatiles, fluids, and melts stored, transferred, and

released? What geochemical products, from mantle to surface reservoirs, influence
continental crust formation?

USGS monitors and characterizes volcanic processes; e.g.

Infrasound constrains a shallow source of
April, 2016 explosions at Cleveland
Volcano, Alaska
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with Carnegie Institution, Connecticut
College, University of Alaska Fairbanks



GeoPRISMS SCD asks about critical feedbacks between surface processes and subduction
zone mechanics and dynamics?

Cascadia
Channel

e 8 ! '_‘l B : 2 A Northern Cascadia: Landward verging thrust faults
S, expressed in a distinct fold belt across the prism.

Central Cascadia: Seaward verging thrust faults result
in a steep, irregular seafloor prone to landslides.

Thrust faults _

" Oceanic
Plate

Frontal décollement

Mendocino Transform

SUBDUCTION ——>»

Southern Cascadia: Gullies and canyons cut across . ./
basins; landslides occur at the base of the slope. Seismogenic plate boundary

Medified from Bangs et al,, Science 2007
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science for a changing world

Coastal/Marine Hazards and Resources Program

Subduction Zone Marine




A 5-year USGS Coastal/Marine Hazards and Resources Program focus on
subduction zone marine geohazards: 2018-2023

Hazard knowledge gaps

Rupture segmentation

Locking model

Shaking

Co-seismic subsidence/uplift

Products

Megathrust & upper plate rupture simulation

End-member surface deformation models

Coastal uplift/subsidence

Submarine landslide

Lake paleoseismology record
Tsunami deposit dates

Slip rates and slip budget

Extend QFFD to offshore

Deformation & structure map (orientation of
structures)

Improve tsunami deposit & inundation map

Seismic reflection atlas

Improved turbidite dating precision

Pre-event baseline data

Rapid response OBS for aftershcocks

Post-event seafloor mapping and coring

(co-seismic deformation, turbidites)
Rapid-response coastal uplift and tsunami

mapping

Alaska
Cascadia

Existing MB compilation

Backscatter

Seep distribution

Quaternery sedimentation distribution map

Quaternery basin map

Site response & Vs map

Hydrate/BSR map




2018-2019: Comprehensive multibeam coverage of the Cascadia forearc
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e 2018 survey on NOAA Ship Rainier
e More mid-water + deep work in 2019
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2018-2019: High resolution, systematic MCS survey of the Cascadia forearc

2019 survey on R/V Coral Sea Co-op with Humbolt State University

* Do potentially tsunamigenic upper plate
structures rupture with the megathrust?

* How do along strike variations in the
morphology and structure of the overriding
plate relate to possible segmentation of the
megathrust?

* How is sediment delivered and redistributed
across the continental shelf and slope?

* Where are the most active upper plate faults
located?




2018-2019:

High resolution, systematic MCS survey of the Cascadia forearc
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2018-2020: High-resolution + large source long-streamer MCS + OBS

Do potentially tsunamigenic upper plate structures rupture with the megathrust?

How do along strike variations in the morphology and structure of the overriding plate relate
to possible segmentation of the megathrust?

How is sediment delivered and redistributed across the continental shelf and slope?

Where are the most active upper plate faults located?

2020: Long-streamer/large source MCS 2019: High-res MCS
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e Carbotte et al. on R/V Langseth e USGS led
e 15 km streamer, 6600 cu. in array e R/V Rachel Carson via co-op with UW
[Carbotte et al.] e ~400 m streamer, 6 kJ sparker




Multi-resolution, systematic seismic survey of the Cascadia forearc

2020 OBS recordmg of La ngseth shots How well does the turbidite record capture earthquake recurrence?
A How does the forearc respond to earthquake shaking?
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Multi-resolution, systematic seismic survey of the Cascadia forearc
2020 2018 - 2019

Passive OBS: Active MCS + OBS:
Cascadia Initiative + Sea Jade Ridge-to-Trench + ORWELL
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Building a rapid-response OBS capability

0 - 30 days 1 -6 months

Tohoku 2011 M9

2018 Kilauea Eruption

2006 Mt. Augustine
Eruption

Earthquakes/day
(normalized)

1 week 1 month 3 months 6 mo.
Mt. Augustine (67 d)

o

— KCralg,AK (111d)

A
Kilauea (66 d)
New RROBS Current capability

e Building a fleet of new instruments designed for rapid response experiments
* Engineering partnership with WHOI
e Instruments will be made available for academic projects of US national interest
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USGS’s focus on hazard and risk complements NSF’s broader

sclentific focus.
=~ USGS

science for a changing world

. . - — - AR e
From science to risk ... we gotta’ plan. SR T RO 5
Science for a Risky World—A U.S. Geological Survey
Plan for Risk Research and Applications W,
. — R . £
Products Description Scientific Input Application . - ”3‘!”?" '5
High-resolution hazard =~ Maps of expected neighborhood-scale High-resclution topography, onshore Building design codes,
maps variations in earthquake shaking and and offshore; three dimensional (3-D) prioritized retrofitting,
ground-failure, tsunanm inundation, models of Earth’s structure; well- urban planming, and
landslide potential, volcanic eruptions and characterized faults, unstable slopes, evacuation routing
lahars active volcanoes
Simulations Science-based scenarios conveying Geologic field and laboratory studies, Improved mitigation
hypothetical subduction zone events chronologies of past subduction zone strategies
events
‘Warning systems Advance notice of strong earthquake Multidisciplinary monitoring systems, Rapidly implemented
shaking, volcanic eruptions, tsunamis, and onshore and offshore life- and property-
landslides saving measures
New types of forecasts Updated projections of aftershocks, landslides = Rapidly acquired satellite and surface Safer, faster, and
and ground failures, volcanic lahars and measurements more cost-effective
ash clouds response and recovery
Novel assessments of Likelihoods of landshide-triggered tsunamis; Computer models simulating linked Rapid and effective
cascading subduction earthquake-induced coastal land-level processes mitigation, response
zone events changes, flooding and erosion and recovery




Examples of science to risk mitigation.
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Volcano lahar science
guides warning system &
evacuation routing

Unreinforced Masonry (URM)
evacuation routing &

coastal development

- = Frequently Asked Questions



USGS’s Vision is built on partnerships!

UNIVERSITIES

& I0DP  rmisico

INTERNATIONAL OCEAN

.‘, DISCOVERY PROGRAM ° JA PAN
* CANADA
* CARIBBEAN
* NEW ZEALAND
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OCEAN OBSERVATORIES INITIATIVE

L USNRC

% USGS PRIVATE COMPANIES, FOUNDATIONS

science for a changing world
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