
As you read this article, there are 40-50 volcanoes erupting 
(www.volcano.si.edu). These eruptions have profound 
implications for hazards (Cameron et al. 2018; Roman 

and Cashman 2018; Power et al. 2020), formation and evolution 
of crust (Cai et al. 2015; Morris et al. 2019), climate and volatile 
cycling (Kelemen and Manning 2015; Aiuppa et al. 2019; Fischer 
et al. 2019), and ore deposits (Zajacz et al. 2010; Wilkinson 2013; 
Blundy et al. 2015), and they enable Earth Scientists to peer deep 
into Earth (Turner et al. 2016; Till et al. 2019). Understanding the 
volcanic process is of fundamental importance, and the study of 
the architecture of crustal magmatic systems is key to achieving 
this goal. Magmatic plumbing systems may be understood, in part, 
from investigation of magma storage depth, which relates closely to 
eruptibility (Moran et al. 2011; Degruyter and Huber 2014; Huber 
et al. 2019), crustal structure (Janiszewski et al. 2013; Crosbie et al. 
2019), and magmatic differentiation (Zimmer et al. 2010; Husen et al. 
2016). Because many magmatic systems are thought to be dynamic 
in nature, determining the timescales of magmatic processes is also 
crucial to understanding magmatic plumbing systems.

In the decade since the inception of GeoPRISMS, we have 
significantly improved our understanding of the depths and rates 
of magmatic processes occurring in the crust. Large-scale research 
platforms have enabled data collection at an unprecedented level 
of detail, and have facilitated collaborations across disciplines 
and institutions. One prime example is the joint GeoPRISMS and 
EarthScope iMUSH experiment (Hansen et al. 2016; Kiser et al. 
2016; Kiser et al. 2019; Ulberg et al. 2020). Another is the set of 2015 
field campaigns in the Aleutians, which brought together scientists 
from GeoPRISMS, the Alaska Volcano Observatory, and the Deep 
Carbon Observatory. Concurrent with large-scale community 
experiments have been advancements in methods of data collection 
and analysis. Novel seismic experiments have been conducted, such 
as the deployment of large geophone arrays (Hansen and Schmandt 
2015; Glasgow et al. 2018), and we are now able to perform full-
waveform inversions of infrasonic data with topography, thereby 
enabling estimates of volume flow rate (Kim et al. 2015; Fee et al. 
2017b). The development of Multi-component Gas Analyzer System 
(MultiGAS) instruments enables the measurement of different gas 
species simultaneously, ushering in a new era for studies of magmatic 
systems (Aiuppa et al. 2005; Shinohara 2005).

 Improved microanalytical techniques now enable the high-precision 
analysis of major, volatile, and trace elements at the micron scale (Le 
Voyer et al. 2014; Lloyd et al. 2014; Saunders et al. 2014; Ubide et 
al. 2015). Crystal clocks, which are geochemical tools based on the 
principle of diffusion, have come of age, and are increasingly used for 
determining rates of magmatic processes over timescales of minutes 
to thousands of years (Rosen 2016), and our geobarometric tools 
have been honed (Fig. 1; Neave and Putirka 2017; Rasmussen et al. 
2020). The growing body of observations using such techniques in 
the study of experimental and natural systems has been codified by 
recent reviews (Bergantz et al. 2015; Cashman et al. 2017). Together, 
we are now able to peer into magmatic plumbing systems and place 
magmas in both time and space. In this article we highlight a few 
of the areas of significant progress from GeoPRISMS and related 
research, and we identify areas for future work. We focus on arc 
magmatism, as arcs are where most subaerial volcanism occurs.

Daniel Rasmussen (National Museum of Natural History, Smithsonian Institution) and 
Megan Newcombe (University of Maryland)

Under the volcano:
Tracing the path of eruptible arc magmas
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Figure 1. Combined chronometry and barometry approach to 
understanding magmatic plumbing systems.
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What is the rate of mantle-derived 
magma production at arcs?
The supply of mantle-derived magma ultimately drives volcanic 
eruptions (Poland et al. 2012; Sides et al. 2014) and controls crustal 
production at arcs (Vogt et al. 2012; Till et al. 2019). Quantification 
of the rate of magma supply from the mantle to the base of the crust 
requires estimations of erupted and intruded magma volumes, and 
rates of crustal erosion. These parameters are notoriously difficult 
to estimate, but much progress has been made via the study of 
exposed crustal sections (DeBari and Greene 2011; Kay et al. 2019; 
Morris et al. 2019), lower-crustal xenoliths (Rudnick and Goldstein 
1990; Yogodzinski and Kelemen 2007) and from seismic surveys 
(Shillington et al. 2004; Janiszewski et al. 2013; Shillington et al. 
2013). Radiometric dating can be combined with estimates of crustal 
composition and structure to estimate time-averaged magma supply 
rates (Jicha et al. 2006; Jicha and Jagoutz 2015; Ducea et al. 2017). 
Alternatively, time-averaged magma supply rates can be estimated by 
pairing measurements of SO2 fluxes from volcanoes with estimates 
of primary magma sulfur concentrations derived from analyses of 
primitive melt inclusions (Werner et al. 2020). Estimates of magma 
supply rates can then be combined with estimates of extruded magma 
volumes (Werner et al. 2017) to calculate the ratio of intruded to 
extruded magma volume; e.g., Werner et al. (2020) use this approach 
to estimate an intrusive to extruded magma volume ratio of 13:1 at 
Mt. Cleveland, Alaska. 

What controls the rate of magma production at subduction 
zones? The age, temperature, incoming plate velocity, slab dip, and 
hydration state of the slab are all considered to be important factors  
(Syracuse and Abers 2006; van Keken et al. 2011). The spatio-
temporal variability in magma supply rates and primitive melt 
compositions may manifest as along-arc volcanic variability. 
However, the relative importance of mantle versus crustal control 
of along-arc volcanic variability remains a frontier problem in 
subduction zone science (Till et al. 2019). 

Where is magma stored and processed in the crust?
Prior to their eruption at the surface, mantle-derived magmas 
must travel through crustal plumbing systems. In the last 
decade, our ability to identify and characterize such regions has 
grown substantially. Geodetic methods have seen significant 
advancements, particularly in data collection (Ebmeier et al. 2019) 
and computational techniques (Anantrasirichai et al. 2019; Reath et 
al. 2019; Sun et al. 2019). New satellite technology, exemplified by 
Sentinel-1 and satellite constellations, offers improved coverage and 
repeat intervals, enabling large-scale studies of volcanoes (Ebmeier 
et al. 2013; Pritchard et al. 2018). New seismic methods have been 
developed, including shear-wave splitting analysis (Roman and 
Gardine 2013) and novel receiver function techniques (Janiszewski 
et al. 2020). Electrical conductivity methods have seen significant 
advancements (Laumonier et al. 2017). Geochemical tools for 
studying magma depth have also improved substantially. Perhaps 
the greatest advancement has been in the field of melt inclusions, 
with new methods to account for vapor bubble growth (Hartley et 

al. 2014; Mironov et al. 2015; Moore et al. 2015; Wallace et al. 2015; 
Rasmussen et al. 2020), increasing depth estimates by up to a factor 
of two (Rasmussen et al., 2020). Finally, multi-disciplinary studies 
of magma depth, perhaps the best means for progress, are becoming 
increasingly prevalent (Aiuppa et al. 2010; Rasmussen et al. 2018b; 
DeGrandpre and Le Mével 2019; Werner et al. 2020). 

The first stage of crustal transport of mantle-derived melts may 
be storage in lower crustal processing zones, referred to as MASH 
(Melting, Assimilation, Storage, and Homogenization; Hildreth 
and Moorbath 1988) or hot zones (Annen et al. 2006). Here 
magmas may undergo an initial phase of differentiation. Typically, 
such regions are envisioned to occur in the lower crust because 
elevated temperatures make them more easily maintained over long 
timescales (Annen et al., 2006) and geochemical evidence may point 
to the lower crust (Hildreth and Moorbath, 1988). In recent years, 
this model has been expanded. Differentiation is often considered 
to occur at various depths in the crustal column (Putirka 2017), and 
magmatic systems that seamlessly span much of the length of the 
crust have been proposed (Cashman et al., 2017). However, evidence 
exists that underscores the importance of lower crustal storage in 
some locations. Evidence is strong in areas of thick crust, such as 
central Chile (Hildreth and Moorbath, 1988) and Taupo (Rocco et 
al. 2019). Additional evidence comes from studying exposed arc 
crustal sections, such as the Famatinian, Kohistan, and Talkeetna 
arcs (DeBari and Greene 2011; Walker Jr et al. 2015). As seismic and 
electromagnetic techniques improve, it is now possible to see through 
upper- and mid-crustal magma bodies into the lower crust and find 
evidence for deep zones of melt collection. Slow seismic and/or 
conductive anomalies, consistent with regions of melt accumulation, 
have been found at several locations, such as Mount St. Helens 
(Kiser et al. 2016; Bedrosian et al. 2018), Puna Plateau (Delph et al. 
2017), and Cleveland volcano (Janiszewski et al. 2020). While our 
ability to identify such regions has grown, questions remain about 
the prevalence of such lower crustal processing zones, particularly 
in regions of relatively thin crust, such as island-arc settings.

The vast majority of magma storage regions identified with 
geophysical and geochemical techniques are in the mid to upper 
crust. A key area of recent focus has been studying magma 
storage regions below caldera systems. These systems tend to 
be characterized by shallow magma storage (<5 km below the 
surface); examples include Okmok (Hart et al. 2018; Miller 
et al. 2018), Taupo (Harmon et al. 2019), Fisher (Mann and 
Freymueller 2003), and Masaya (Stephens and Wauthier 2018). 
However, exceptions to shallow storage exist (DeGrandpre et al. 
2017; Jiang et al. 2018; Gottsmann et al. 2020). Another area of 
focus has been understanding how magmatic plumbing systems 
evolve during the lead-up to eruption, demonstrating their 
dynamic nature (Kahl et al. 2015; Rasmussen et al. 2018b; Ruth 
et al. 2018; Albert et al. 2019). Effort has gone into compiling 
large databases of magma storage depth estimates (Chaussard 
and Amelung 2014), which most commonly identify storage 
regions between 2 and 8 km depth (Fig. 2; Rasmussen et al., 2019). 

Final Volume  Issue No. 43  GeoPRISMS Newsletter • 65 



Magma storage depths in less evolved (basalt-andesite) systems 
are closely linked to magmatic water content, consistent with 
magmatic water content influencing magma storage depth (Fig. 2; 
Zellmer et al. 2016; Rasmussen et al. 2019). Despite recent progress, 
several questions remain. The most significant progress will come 
from multidisciplinary studies, which often lead to improved 
understanding of not only depth but also process.

Over the last several years, there has been a paradigm shift in our 
understanding of magmatic plumbing systems. Gone are images of 
singular melt-rich pools in the mid- to upper-crust. Evidence for 
magma storage in crystal-rich mush zones is ubiquitous (Bachmann 
and Bergantz 2008; Marsh 2015), and such reservoirs are exemplified 
in some volcanoes in GeoPRISMS focus areas e.g., (Grant et al. 
2019). Now, magmatic systems are commonly viewed with trans-
crustal perspective in which mantle-derived magmas are processed 
in vertically extensive, low-melt fraction mush networks (Cashman 
et al. 2017). At some volcanoes, deep crustal seismicity has been 
linked to volcanic activity, demonstrating connectivity of magmatic 
plumbing systems (Power et al. 2004; Nichols et al. 2011). 

How long does it take for magma to transit the crust?
A long-standing challenge has been determining the time required 
for magma to transit the crust. Recent advancements, particularly in 
the field of geochemistry, enable us to address this question. In the 
last decade, improved analytical methods and experimental data have 
unlocked the potential of crystal clocks, or diffusion chronometers 
(Costa and Morgan 2011; Costa et al. 2020).

The basic principle of these tools is that chemical or physical 
perturbations to a magmatic system may result in disequilibrium 
between the phases (e.g., melt, crystals) and initiate diffusion. Upon 
eruption, partially equilibrated crystals and melt erupt, freezing 
their chemical compositions in place. The extent of elibration can be 
determined by measuring the chemical composition, and through 
diffusion modeling, the time between the initial perturbation and the 
eruption can be determined. Often, this tool is used in conjunction 
with constraints from geophysics (Kahl et al., 2015; Rasmussen et 
al., 2018), geobarometry (Rasmussen et al., 2018; Ruth et al., 2018), 
and radiometric age dating (Cooper and Kent, 2014).

It is likely that primitive magmas erupted at the surface are biased 
towards shorter crustal transit times than more evolved magmas. 
Such magmas are commonly erupted at monogenetic cinder cones 
(Ruscitto et al. 2010; Salas et al. 2017; Rasmussen et al. 2018a; Pitcher 
and Kent 2019; Walowski et al. 2019). Thermo-chemical modeling 
has been used to argue that the preservation of high-forsterite 
olivine in basaltic magma requires rapid transport through the crust 
(Ruprecht and Plank, 2013), which may facilitate eruptions of high-
forsterite olivines at cinder cones (Ruscitto et al. 2010; Salas et al. 
2017; Walowski et al. 2019). Indeed, heightened seismicity occurs 
over timescales of weeks to years before eruptions of monogenetic 
cones, consistent with results from crystal clocks, suggesting 
relatively short crustal residence times for these magmas (Albert et 
al. 2016). Magmas that feed monogenetic cones in the Cascades are 
a current topic of study (Couperthwaite et al., 2020).
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Relatively primitive magmas are also be erupted from some longer-
lived edifices (Andrys et al. 2018). Short crustal transit times have 
also been found at these locations. Recent applications of diffusion 
chronometry to the crystal cargo of primitive magmas have 
addressed this question: Ni zonation patterns found in the cores of 
mantle-equilibrated olivine from Volcán Irazú in Costa Rica indicate 
mantle-derived melts can transit the crust in timescales of months 
to years (Ruprecht and Plank 2013), and even faster timescales of 
days have been found for the transit of magma from the Moho to the 
surface at Iceland (Mutch et al. 2019). Such timescales are similar to 
those of unrest and eruption (Passarelli and Brodsky, 2012), raising 
the possibility that magma supplied from the mantle can directly feed 
eruptions in some cases. We note that such short timescales (days 
to years) commonly determined for mafic systems may not tell the 
complete story. There is evidence that the residence time for crystals 
mobilized in basaltic eruptions may be significantly longer than the 
mobilization timescales (de Maisonneuve et al. 2016).

Evolved magmas erupted at long-lived edifices are likely subjected to 
much longer periods of stalling and processing. Combined studies of 
absolute crystal ages, determined radiometrically, and relative crystal 
ages, determined with diffusion-based approaches, indicate that 
crystal storage at long-repose interval volcanoes can last thousands 
to tens of thousands of years, but temperatures are above the solidus 
for only a small fraction of this time (Cooper and Kent 2014). At 
Taupo Volcanic Center, plagioclase crystallization ages are similar to 
maximum ages implied by diffusion chronometers, consistent with 
relatively long-term storage under warmer conditions (Schlieder et 
al. 2019). An alternative tool for understanding storage timescales, 
which is also based on chemical diffusion, is the analysis of melt 
inclusion morphology, which has been used to suggest timescales 
of tens to hundreds of years for the final assembly of large silicic 
magma bodies (Pamukcu et al., 2015). A relationship between 
magma composition and storage timescales is supported by the 
observation that volcanoes that erupt intermediate to evolved magma 
compositions generally have longer periods of repose than volcanoes 
erupting relatively primitive magmas (Passarelli and Brodsky, 2012). 

What are the timescales of 
volcanic unrest and eruption?
Volcanic eruptions are often preceded by signs of unrest (Newhall et 
al. 2017) such as increased seismicity (Roman et al. 2006; Passarelli 
and Brodsky 2012), edifice inflation (Wnuk and Wauthier 2017; 
Pritchard et al. 2018), and changes in the composition and/or flux 
of volatile emissions (de Moor et al. 2016). In an ideal world, these 
signals of unrest could be used to predict the timing and size of 
volcanic eruptions; however, there are many challenges to this 
approach: Some volcanoes erupt with little-to-no warning (Fee et 
al. 2017a), while other volcanoes exhibit signs of unrest that are not 
followed by an eruption (Moran et al. 2011; Werner et al. 2011). 
Additionally, the timescale of volcanic unrest preceding an eruption 
varies from volcano to volcano (Passarelli and Brodsky 2012), and 
(in some cases) from eruption to eruption at the same edifice (Roult 
et al. 2012). With the compilation of large databases that document 
geophysical and geochemical records of volcanic unrest (Newhall 
et al. 2017), and the development of machine-learning techniques 
for automating the interpretation of such datasets (Malfante et al. 
2018), we are poised to make great progress in our understanding of 
the processes and timescales of magmatic processes that occurring 
during the run-up to volcanic eruptions. A fundamental challenge 
is that the number of well-monitored eruptions we have is relatively 
small and the monitoring record is restricted to only the most recent 
eruptions. Petrologic approaches open up the possibility of studying 
geochemical signals of volcanic unrest throughout the entire rock 
record, thereby massively expanding the geographical and temporal 
range of eruptions that can be studied. The extension of such studies 
to present-day eruptions at well-monitored volcanoes allows for 
a powerful interdisciplinary approach that combines geophysical 
‘foresight’ with a mechanistic, petrologic context. 

One of the key areas of interest in the last several years has been the 
identification and study of magma recharge events (i.e., influxes of 
new magma to a shallow magma storage region), which are thought 
to be common eruption triggers (Martin et al. 2008).
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The crystal clocks described above have been adapted for the study 
of relatively short-timescale processes such as magma recharge; e.g., 
Lynn et al. (2018) demonstrated that zonation of Li in olivine may 
record magma recharge events that precede eruption by hours to 
days. Fe-Mg zonation in olivine (Lynn et al. 2017; Rasmussen et al. 
2018b) can preserve evidence of multiple magma recharge events. 
When combined with the geophysical record of volcanic unrest, the 
petrologic record of magma recharge can provide a posteriori context 
that may aid the interpretation of future geophysical monitoring 
signals (Rasmussen et al. 2018b). Interdisciplinary studies that 
combine geophysical and geochemical records of volcanic unrest are 
vitally important for improving the accuracy of eruption forecasting. 
Additionally, we lack a general understanding of what controls the 
duration of run-up. Passarelli and Brodsky (2012) demonstrate that 
there is a broad correlation between run-up and repose (Fig. 4), yet 
the reason for this correlation remains puzzling. 

Advancements in geospeedometers tuned to operate on even shorter 
timescales of seconds to hours have opened the door for research into 
syn-eruptive processes. Decompression-driven ascent of magma in 
volcanic conduits is accompanied by exsolution of volatile species 
such as water and carbon dioxide (Fig. 5A), and the imprint of this 
magma degassing is preserved as volatile concentration gradients 
in quenched silicate melt and crystals (Fig.  5C). Modeling of 
syn-eruptive volatile diffusion during magma decompression 
supports a relationship between decompression rate and eruptive 
style in basaltic systems, with rapidly decompressing magmas 
exhibiting higher mass eruption rates and vice versa (Chen et al. 
2013; Lloyd et al. 2014; Ferguson et al. 2016; Barth et al. 2019; 
Newcombe et al. 2020). In rhyolitic systems, similar techniques 
have been used to study the onset and evolution of caldera-forming 
eruptions (Myers et al. 2016; Myers et al. 2018).

Another application of short-timescale diffusion chronometry is the 
use of MgO zonation in olivine-hosted melt inclusions to determine 
syneruptive cooling rates (Newcombe et al. 2014; Saper and Stolper 
2020; Newcombe et al. 2020). When paired with the magma 
decompression chronometers described above, this technique can 
be used to constrain syneruptive pressure-temperature-time paths 
of mafic magmas; results of this approach suggest that rapidly-
ascending gas-bearing magmas experience slower cooling during 
ascent and eruption than slowly-ascending magmas (Newcombe 
et al. 2020). Conduit models indicate that temperature changes of 
magma during syneruptive ascent exert a strong influence on ascent 
dynamics and eruptive style (Gonnermann and Manga 2007; La 
Spina et al. 2015). Future efforts to integrate the petrologic record 
of conduit conditions into fluid dynamical models of magma ascent 
and eruption will be required to advance our understanding of the 
controls on eruptive style.

Looking forward
This article has followed the journey of mantle-derived melts from 
their generation to eruption. Understanding this journey, and 
its importance for controlling the life cycles of volcanoes across 
the globe, is widely recognized as one of the grand challenges of 
volcano science (e.g., Volcanic Eruptions and Their Repose, Unrest, 
Precursors, and Timing “ERUPT” report of the National Academies, 
2017). The GeoPRISMS community has studied every aspect of 
this journey, revealing a great deal about the nature of magma 
storage regions and the timescales of magma migration through the 
crust. The insights gleaned from GeoPRISMS work and the strong 
interdisciplinary community that we have forged will serve us well 
as we build new initiatives to answer the many remaining mysteries 
of volcanology. ■
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