Louisville seamount subduction: tracking mantle flow beneath the central Tonga-Kermadec arc

Christian Timm1*, Daniel Bassett2, Ian J. Graham1, Matthew I. Leybourne1†, Cornel E.J. de Ronde1, Jon Woodhead3, Daniel Layton-Matthews4 and Anthony B. Watts2

1Department of Marine Geoscience, GNS Science, PO Box 30-368, Lower Hutt, New Zealand, 2Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, 3School of Earth Sciences, University of Melbourne, Victoria 3010, Australia, 4Department of Geological Sciences & Geological Engineering, Queen’s University, Kingston, Ontario, Canada, † now at ALS Geochemistry, 2103 Dollarton Hwy, North Vancouver, BC, Canada

c.timm@gns.cri.nz

Subduction of alkaline intraplate seamounts beneath a geochemically depleted mantle wedge provides a rare opportunity to study element recycling and mantle flow in some detail. One example of a seamount chain – oceanic arc collision is the ~2,600 km long Tonga-Kermadec arc, where midway the Cretaceous Louisville seamount chain subducts beneath the central Tonga-Kermadec arc system. Here subduction of a thin sediment package (~200 m) beneath oceanic lithosphere together with an aqueous fluid-dominated system allows to track geochemical signatures from the subducted Louisville seamounts and to better understand mantle flow geometry.

Geochemical analyses of recent lavas (<10 ka) from volcanic centers west of the contemporaneous Louisville-Tonga trench intersection (Monowai, ‘U’ and ‘V’) show elevated $^{206}\text{Pb}/^{204}\text{Pb}$, $^{208}\text{Pb}/^{204}\text{Pb}$ and to a lesser extend $^{87}\text{Sr}/^{86}\text{Sr}$ values but N-MORB-type compared to centers to the north and south (e.g. Turner et al., 1997; Haase et al., 2002; Timm et al., 2012) but mostly similar N-MORB-type ratios of fluid-immobile trace elements (e.g. La/Sm < 0.9).

This suggests that the observed geochemical anomaly above the subducted Louisville seamount chain is predominantly fluid-derived and hence different from other anomalies observed along the Tonga-Kermadec arc (e.g. Todd et al., 2011), interpreted to be pre-existing mantle heterogeneities.

Absolute pacific plate reconstructions indicates an anticlockwise rotation of the subducted Louisville seamount chain occurring in the chain older than oldest unsubducted Louisville seamount (~77 Ma old Osbourn seamount; Koppers et al., 2004) –a corollary to the westward kink of the Hawaii-Emperor seamount chain near the ~76 Ma old Detroit seamount (Duncan and Keller, 2004). If combined the geochemical anomaly and the geodynamic evidence is consistent with localized mainly fluid-derived input of Louisville material into partial mantle melts.

Finally, the combination of the geodynamic observation and estimates of the timing of fluid release from the subducting slab via U-series data (e.g. Bourdon et al., 1999; Caulfield et al., 2012) allows to determine the mantle flow geometry, which is primarily trench-normal mantle flow, although a slow southwards mantle flow of ~6cm/yr. is permissible (Timm et al., in press).
References:

*Figure 1.* Pb and Sr isotope data, showing mixing calculations between the arc mantle and subducted Louisville material.