Effects of 3-D Slab Geometry and Oblique Subduction on Mantle Wedge Flow and Thermal Structure: Examples from NE Japan

Ikuko Wada

Department of Earth Sciences, University of Minnesota

NE Japan

Slab geometry data from Kita et al. (2010), Nakajima and Hasegawa (2006), and Nakajima et al. (2009); compiled by F. Hirose
Slab geometry data from Kita et al. (2010), Nakajima and Hasegawa (2006), and Nakajima et al. (2009); compiled by F. Hirose
Three-Dimensional Steady-State Finite Element Model

Governing Equations

\[\nabla \cdot v = 0 \]
\[\nabla \cdot \sigma' - \nabla P = 0 \]
\[\nabla \cdot (k \nabla T) - \rho c_p \left(v \cdot \nabla T \right) + Q_H = 0 \]
Three-Dimensional Steady-State Finite Element Model

Model parameters
- Subduction rate (v): 82 mm/yr
- Trench-side geotherm: Slab age of 120 Ma (GDH1)
- Backarc-side geotherm: 88 mW/m² surface heat flow
 $T_m = 1300$
 0.3°C/km adiabatic gradient
A total of ~2 million elements and ~16 million grid nodes in our final calculation

- Incorporation of a realistic slab geometry
Model-Predicted Flow Directions at 80 km depth

- Inflow from N beneath Hokkaido
- Reduced inflow in the Hinge zone
- Inflow from W beneath Tohoku; little 3-D effect

- Outflow parallel to the subduction direction
Model-Predicted Flow Directions at 105 km depth

- Inflow from NNE beneath Hokkaido; variation in inflow direction with depth
- Little change in the outflow direction with depth
Average fast direction and delay time at each station

Spatially averaged fast direction
Inflow Direction and Volcanic Cross-Chain Orientation
Model-Predicted Mantle Wedge Temperature at 60 and 80 km depths

Compared to Tohoku...

- 50–100°C cooler in Hokkaido due to oblique subduction and steeper dip
- 100–200°C cooler in the hinge zone due to subdued mantle inflow
Seismic Attenuation and S-wave Structures in the Mantle Wedge

- Volcanic clustering
- “Hot fingers” [Tamura et al., 2002]

- “Wet fingers” [Nakajima et al., 2013]
Low-Velocity High-Attenuation Regions: Hot Fingers vs. Wet Fingers

Hot-Finger Model
(Low-Velocity Zones = Hot Regions)

Wet-Finger Model
(Low-Velocity Zones = Wet Regions)
Summary

• In Tohoku, a 2-D approximation is reasonable.
• In Hokkaido, oblique subduction results northerly inflow and west-northwestward outflow.
• In the hinge zone, the convergence of northerly inflow from Hokkaido and the westerly inflow from Tohoku discourages inflow from northwest.
• Compared to Tohoku, Hokkaido and the hinge zone are colder.
• Mantle inflow direction correlates well with the seismically fast direction and the orientation of volcanic cross-chains.
• A mechanism of volcanic clustering remains to be investigated.