Subduction Zone Observatory
Perspectives from the Student & Postdoc Symposium

Erin Wirth, University of Washington
TEI Student + Postdoc Symposium

- Students (30) + Postdocs (18)

Why Was This Important?
- Perhaps less biased towards preconceived notions of what an SZO should be.
- (And perhaps less practical.)

Courtesy of Kimmy McCormack
Discussion on an SZO led by Joan Gomberg (USGS)

Perhaps less biased towards preconceived notions of what an SZO should be.

(And perhaps less practical.)
TEI Student + Postdoc Symposium

• Discussion on an SZO led by Joan Gomberg (USGS)

• Perhaps less biased towards preconceived notions of what an SZO should be.

What is the slip behavior and rheology of the near-trench portion of subduction fault and what controls it?
TEI Student + Postdoc Symposium

• Discussion on an SZO led by Joan Gomberg (USGS)

• Perhaps less biased towards preconceived notions of what an SZO should be.

• (And perhaps less practical.)
Questions for Today!

• What are major scientific questions?
• What observations, tools, and structures are needed to solve the big science problems?
• What are the major geographic targets?
• How to organize a SZO (centralized or distributed, community or individual experiments)?
• Who are partners, nationally and internationally?
What are the major scientific questions?
What are the major scientific questions?

- Subduction Initiation
- Controls on Slab Morphology – Effects on Dynamics
- Erosion and Morphology near the Trench
- Water Budget
- Spectrum of Slip Behavior
- Feedback Cycles
- Why do we have deep earthquakes?
- Constraints on the Spatial Distribution of Slip
- Stability of the Wedge at Trench
- Fluid migration in the slab and wedge
- Can Slabs Tear?
- What physical characteristic modulate the transition zone?
What are the major scientific questions?

- Subduction Initiation
- Erosion and Morphology near the Trench
- Spectrum of Slip Behavior
- Stability of the Wedge at Trench
- Why do we have deep earthquakes?
- Controls on Slab Morphology – Effects on Dynamics
- Feedback Cycles
- Constraints on the Spatial Distribution of Slip
- Fluid migration in the slab and wedge
- Can Slabs Tear?
- Water Budget
- What physical characteristic modulate the transition zone?
What are the major scientific questions?

- Subduction Initiation
- Controls on Slab Morphology – Effects on Dynamics
- Erosion and Morphology near the Trench
- Water Budget
- Feedback Cycles
- Constraints on the Spatial Distribution of Slip
- Stability of the Wedge at Trench
- Spectrum of Slip Behavior
- Why do we have deep earthquakes?
- Fluid migration in the slab and wedge
- Can Slabs Tear?
- What physical characteristic modulate the transition zone?
What observations, tools, and structures are needed?
What observations, tools, and structures are needed?

- Strong Offshore Component
 - OBS
 - Marine EM
 - Ocean bottom GPS
 - Fluid flow sensors
 - Tidal gauges
 - Drill cores
What observations, tools, and structures are needed?

• Onshore
 – Boreholes everywhere! (3BB, strainmeters, GPS)
 – Remote observations (InSAR)
What observations, tools, and structures are needed?

- **Onshore**
 - Boreholes everywhere! (3BB, strainmeters, GPS)
 - Remote observations (InSAR)

- **Deployment Style**
 - Some long term (10-20 year) deployments
 - Package & move instruments? (like Earthscope)
 - RAMP Component
What are the major geographic targets?

• “Weird” vs. “Normal” Subduction Zones
• Every Subduction Zone!
• Hazard Oriented – Go where there are people
• Well-studied
• Compare multiple (2+) systems
• Do a few things at many subduction systems, or many things at just one?
What are the major geographic targets?

- “Weird” vs. “Normal” Subduction Zones
- Every Subduction Zone!
- Hazard Oriented – Go where there are people
- Well-studied
- Compare multiple (2+) systems
What are the major geographic targets?

- “Weird” vs. “Normal” Subduction Zones
- Every Subduction Zone!
- Hazard Oriented – Go where there are people
- Well-studied
- Compare multiple (2+) systems

Do a few things at many subduction systems, or many things at just one?
Centralized or distributed, community or individual projects?
Centralized or distributed, community or individual projects?

- Community sharing for some aspects (i.e., OBS). Smaller projects or more novel techniques can be carried out by individuals.
Who are our partners, nationally and internationally?
Who are our partners, nationally and internationally?

- Japan.

Biologists? Climate Scientists?
Who are our partners, nationally and internationally?

- Japan.
- GeoPRISMS, Earthscope, UNAVCO, Cascadia Initiative, Neptune & OOI Cabled Observatories, IODP, JAMSTEC & ERI...
Who are our partners, nationally and internationally?

• Japan.

• GeoPRISMS, Earthscope, UNAVCO, Cascadia Initiative, Neptune & OOI Cabled Observatories, IODP, JAMSTEC & ERI...

• Biologists? Climate Scientists?
Thank You!

Questions for Today!

- What are major scientific questions?
- What observations, tools, structures are needed to solve the big science problems?
- What are major geographic regions?
- How to organize a IAO (centralized or distributed, community or individual experiments?)
- Why are partners, not international?