Characterizing the Southeastern Appalachian Margin Via Integrated Potential Field and Structural Modeling

Patrick Duff and James Kellogg
Model profile (A-A’), major structural features, and other geophysical data over Bouguer gravity
• COCORP and ADCOH seismic is merged, depth approximated (6.5 km/sec (Hawman, 2008)), and projected along structural strike/potential field anomalies

• Note NW dipping seismic reflectors on COCORP data and footwall anticline of interpreted platform sediments beneath Hayesville fault and CPS

• Forward model polygons come directly from seismic reflection data
Modeling APGA does not require change in lower crustal density → Carolina Terrane likely does not span full thickness of crust → Grenville basement extends farther eastward at least to Augusta fault

Footwall anticlines are imbricate structures of remobilized Grenville basement → Laurentian platform sediments do not everywhere underlie the Blue Ridge and Inner Piedmont
Uplift from compilation of P-T-t geochemical data

Can low angle faults produce observed regionally consistent Alleghanian uplift of 5-10 km?
Retrodeformation = 210 km of shortening in FTB (Hatcher et al., 2007) + minimum displacements on 4 basement involved faults (Smokey Mtn, Hayesville, Brevard, CPS) = at least 370 km of total shortening

- Observed 5-10 km of uplift can easily be accommodated on these low angle faults