Spatial Variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian Subduction Zone

Shanshan Li1, Jeff Freymueller1

December 10th, 2017

1 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA

Notes: This work has been submitted to GRL.
Outline

- Background and Motivation
- GPS Data
- Results
 - Inconsistency between the horizontal and vertical velocities
 - Three sharp boundaries that mark changes in fault locking
 - Correlation between the locking distribution and the plate fabric from magnetic anomaly, and subduction seismicity
- Conclusions
- Future Questions
Background and Motivation
Previous study of Along-strike Variation In Fault Coupling

Topographic map and tectonic setting of the study area on the Alaska Peninsula. Blue dots are GPS stations used in this study. Orange dots are GPS stations with significant volcano deformation.

Slip deficit model from Fournier and Freymueller (2007). Data (red) and model (black) velocity vectors are shown. All of the data have been corrected for arc translation (Cross and Freymueller, 2007).
Research Motivation

1. Given a more dense GPS network, what is the along-strike variation in the locking distribution?

2. Does the estimated locking distribution correlate with features of the overriding or down-going plates from other observations?
GPS Data
1. Re-survey pre-existing campaign GPS sites (35 sites) within Shumagins and the 1938 rupture zone to the northeast in May – June 2016;

2. Current GPS site network has much lower uncertainties than the previous one;

3. Site velocity constant in time except one SSE (eg. Station AB07).
Figure 5. Time Series of GPS station AB07, detrended based on pre-SSE velocity (GRACE-derived seasonal variation removed and residual seasonal terms are estimated and shown). The strongly shaded area contains 68% SSE deformation (2011.5 ± 0.37). The weakly shaded area contains 95% SSE deformation (2011.5 ± 0.83). The counterpoint of the event at 2011.5.
Results
Results

- Inconsistency between the horizontal and vertical velocities

- Three sharp boundaries that mark changes in fault locking

- Correlation between the locking distribution and the plate fabric from magnetic anomaly, and subduction seismicity
Inconsistency between horizontal and vertical velocities

Best fit model for inverted locking distribution by using horizontal and vertical velocities both (smoothing factor = 4e8)
Inconsistency between horizontal and vertical velocities

Possible factors explaining the inconsistency:

• Differences in the published geometry of the plate interface
 ---- Do not explain the inconsistency

• Glacial Isostatic Adjustment
 --- Existing models do not explain it

• Reference frame errors
 --- Do not explain it

For the following models, we only use horizontal component of GPS velocities.
Results

- Inconsistency between the horizontal and vertical velocities

- Three sharp boundaries that mark changes in fault locking

- Correlation between the locking distribution and the plate fabric from magnetic anomaly, and subduction seismicity
Three Sharp Boundaries that Mark changes in Fault Locking

Optimal Model

- Horz Residual (10 mm/yr)
- Model (10mm/yr)
- Observation (10mm/yr)
Three Sharp Boundaries that Mark changes in Fault Locking

1. Obvious step-wise decreases in the width of the locked region from the NE to SW along-strike;
2. A sharp decrease from strongly locked to weakly locked within a short distance from trench towards downdip in the Kodiak segment
Results

- Inconsistency between the horizontal and vertical velocities

- Three sharp boundaries that mark changes in fault locking

- Correlation between the locking distribution and the plate fabric from magnetic anomaly, and subduction seismicity
Locking Distribution vs. Pre-existing Fabric

- **Kula-Pacific** spreading center
- Average rate ~60 mm/yr
- Spreading age: 80 to 56 Ma (44?)

- **Farallon-Pacific** spreading center
- Half rate ~40 mm/yr
- Spreading age: 100 to 55 Ma

- **Vancouver-Pacific** spreading center
- Similar rate as Farallon-Pacific
- Spreading age: 53 to 30 Ma

Boundary 1:
the *cessation of the Kula-Pacific spreading* (intermediate locked) and *beginning of the Vancouver-Pacific spreading* (strong locked).

Boundary 2:
the *northern portion of the Farallon plate broke off* and became the Vancouver plate.

Boundary 3:
a major orientation change in two younger sections of pre-existing fabric near the trench (A triple junction or the attachment of Kula-Pacific spreading?).
Seismicity (Magnitude > 3.0) from the Alaska Earthquake Center from 1990 to present

Shallow earthquakes:
- More common in the creeping-dominated area and near trench in the strongly locked area, less common in between.

Outer-rise earthquakes:
- More abundant in the creeping-dominated area

Intermediate-depth earthquakes:
- More in the creeping-dominated area and in the strongly locked area, then less in between.
Conclusion

1. There is an inconsistency between the horizontal and vertical velocities, and long-wavelength systematic misfits in the vertical velocities still remain unsolved.

2. The width of the locked region decreases step-wise from NE to SW along strike.

3. There are three sharp boundaries separating segments with different fault locking.

4. The changes in pre-existing seafloor fabric orientation contributes significantly to the change in fault locking and subduction seismicity.
Future Questions
Future Questions

Question 1:

Given the **three sharp boundaries** that we found in the estimated locking distribution, are there other properties (eg. evidence of potential active faults, sediment structure, etc) that correlate with these boundaries with **new seismic observations** (eg. P-wave velocity, seismic reflection, earthquake mechanism, etc.)?
Question 2:

Can a different plate interface model, especially in the shallow region, fit the geodetic data better?

- Is all slip on the plate interface? Or is there a combination of slip on the plate interface and an active fault near the trench? An active fault in the forearc might better predict deformation on Chirikof Island.
- What exactly is the geometry of the slip interface located?
Future Questions
Future Questions

Question 3:

Can improved seismic observations help explain the short wavelength variation in shallow earthquakes and intermediate-depth earthquakes?

- At what depth do those shallow earthquakes occur? Are they plate interface events or in the upper plate? What possible mechanisms might explain their correlation with locking of the interface?
- What is a possible mechanism for abundant intermediate-depth earthquakes in strongly locked area?
Thank you!
Spatial Variation of Slip Behavior beneath the Alaska Peninsula along Alaska-Aleutian Subduction Zone

Shanshan Li¹, Jeffrey Todd Freymueller¹

1. Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States

1. Introduction and Background

a. Study Area (Figure 1)

b. Previous Study (Figure 2) (Fournier and Freymueller 2007)

c. GPS sites used in this study

d. GPS sites with volcanoes deformation (not used)

e. Motivation

1. Given a more dense GPS network, what is the along-strike variation in the locking distribution?

1. Does the estimated locking distribution correlate with features of the downgoing plates from other observations?

2. GPS Data and Block Model

a. Previous vs Current GPS Site Network in the Alaska Peninsula

1. Re-survey pre-existing campaign GPS sites (5 sites) in May - June 2016;

2. Current GPS site network has much lower uncertainties than the previous one;

3. Site velocity constant in time except one SSE (e.g. Station AB07)

b. Example of GPS Time Series for Station AB07

c. Block Model

The estimated angular velocity of the PENN block in Li et al. (2010) used data from Cook Inlet and Alaska Peninsula, while the southern Aleutians, leading to systematic thinning of the Greenland velocity here.

2. Results

a. Inconsistency between Horizontal and Vertical Velocities (Figure 7)

b. Slip Model for Sub-segments (Figure 8)

c. Locate the Boundaries that mark the Sharp Changes in Locking (Figure 10)

d. Initial Locking Distribution for Forward Model (Figure 9)

3. Correlation between Locking Distribution and Plate Fabric from Magnetic Anomaly, and Subduction Seismicity

a. Locking Distribution vs. Pre-existing Fabric

b. Locking Distribution vs. Subduction Seismicity

4. Correlation between Locking Distribution and Plate Fabric from Magnetic Anomaly, and Subduction Seismicity

5. Conclusion

6. References

7. Acknowledgement