Mass fluxes

Overview, big-picture questions, and how to solve them

Richard M. Palin (Colorado School of Mines)
Helen A. Janiszewski (DTM, Carnegie Science)
Michelle Muth (University of Oregon)
Contributors

Assistant Prof. Richard M. Palin
Metamorphic petrology; fluid-rock interactions

Dr. Helen A. Janiszewski
Amphibious seismology; tectonophysics

Michelle Muth
Igneous petrology; geochemistry
Overview – Mass fluxes in subduction zones

- **Solid** masses
 - Sediments
 - Crust
 - SOLM
 - Fragments of the upper plate

- **Fluid** masses
 - Seawater
 - Pore fluids
 - Structurally bound volatiles

- Any or all phases may ‘come out’ again

Overview – Mass fluxes in rifted margins

- **Solid** masses
 - Magma -> lava
 - Xenoliths

- **Fluid** masses
 - Extensive degassing via volcanism

Major measurement techniques comprise **geophysics**, **isotope geochemistry**, and **petrology**

Techniques – Passive-source seismic studies

Amphibious seismic arrays

- Crustal, lithospheric, upper asthenospheric mantle scale imaging
- Uses earthquakes, or ambient noise, or other “natural” sources
Techniques – Active-source seismic studies

- Typically seismically image crust to upper mantle
- Involve using a seismic source, like airguns or explosives
- Higher resolution than passive imaging techniques, but covers a more limited area
Techniques – Magnetotellurics

- Electromagnetic geophysical method for inferring the Earth’s subsurface electrical conductivity/resistivity
 - Measures natural geomagnetic and geoelectric field variation at the Earth’s surface
- Complements seismic velocity measurements
 - Useful for discriminating between temperature/fluid/melt anomalies
- Can also be “active” or “passive” – similar differences in resolution
 - From ~300 m depth (high frequencies) to >10,000 m depth (long-period sounding)
Techniques – Geodynamic modeling

- Top: fluid pathways (Wilson et al., 2014)
- Right: stability of hydrous minerals in subducted crust (van Keken et al., 2011)
OQ – What are the properties of the oceanic plate?

Imaging a relatively dry Juan de Fuca crust and mantle in Cascadia from active source seismics (Canales et al., 2017)

Fluid-rich bending faults at middle America Trench from MT (Naif et al., 2015)

Deviations from conductive cooling observed in the Juan de Fuca plate (Janiszewski et al., 2019)
OQ – How much sediment is subducted?

Variations in thickness of subducting sediment in Alaska correspond with variations in downdip seismic behavior (Li et al., 2018).

Variations in fluids and/or sediments along the Hikurangi plate interface correlate with variable plate movement (Heise et al., 2017).
OQ – What is the role of melt in rifting?

How much rifting requires melt vs. faulting (Accardo et al., 2017)?

What are the dynamics of a seafloor-spreading episode at the East Pacific Rise (Tan et al., 2016)?
OQ – What magmatic architecture lies beneath volcanoes?

Left: Magnetotelluric imaging beneath Mt. St. Helens, Mt. Adams, and Mt. Rainier reveal a complex conductive melt region (Bedrosian et al., 2018)

Right: Seismic imaging of magma architecture beneath Mt. St. Helens (Kiser et al., 2018)
Techniques – Arc magma volatiles and geochemistry

- Direct methods for measuring volatiles
 - Melt inclusions/pillow rim glasses
 - FTIR, SIMS, EPMA
 - Gas monitoring/sampling
 - Remote sensing
 - Fumarole sampling

Wallace (2005)
Techniques – Arc magma volatiles and geochemistry

- Indirect methods
 - Isotope/trace element systematics
 - LA-ICP-MS, SIMS, EPMA
 - Experiments
 - Phase equilibria
 - Trace element partitioning
 - Volatile solubility

Nielsen and Marschall (2017)
OQ – Arc magma volatiles

- How are volatiles stored in the slab and released during subduction?
 - What is the fate of H_2O and CO_2 released into the forearc?
 - How does subducted S affect magma redox and the behavior of ore-forming metals, such as Cu?
- How does lower crustal differentiation affect the volatile contents measured at arc volcanoes?

Edmonds et al. (2018)
Techniques – Direct sampling and analysis

- **Direct petrological examination** of solid materials before they enter the trench, or afterwards
 - Optical petrography/mineralogy
 - Mineral assemblages and reaction sequences

- **Where** can we get these samples?
 - Dredging from the sea floor
 - Ophiolites
 - Xenoliths in lavas
 - Exhumed crustal terranes
Techniques – Petrological modeling

- **Calculated phase equilibria** (minerals, fluids, melt) stable at given pressure–temperature (P–T) conditions along slab-top surfaces or any depth within the slab
 - Forward and inverse modeling as functions of intensive (P, T, μ) or extensive (S, V, X) variables

Palin and Dyck (2018)
Techniques – Petrological modeling

- More complex multivariate calculations involving internally consistent thermodynamic data and activity–composition relations for solid-solution phases
- Predict the effects of fluid expulsion from a subducted slab and infiltration into the overlying mantle wedge or lower/middle continental crust
 - Reactive transport
OQ – What actually goes down?

- Predicted mineral assemblages in subducted and metamorphosed mafic and ultramafic materials at asthenosphere–transition zone–lower-mantle conditions
 - How does near-ridge or near-trench metasomatism affect these equilibria?
 - How does this affect mass transport between the hydrosphere and interior?

Shirey and Shigley (2013)
OQ – How significant is subduction-erosion?

- What mass of overlying arc crust is transported beneath the continents during subduction erosion?
 - How much can be removed and where does it end up (i.e. distance from the trench)?

Azuma et al. (2017)
OQ – Relamination?

- Is lower crust really *that* mafic?
 - Hacker *et al.* (2011) suggest that felsic subducted crust can be re-added/laminated to the base of the overlying arc

- How can this be proven?

- Has this effect varied in efficacy throughout geological time?
 - Subduction has not always operated, and when it has, has not always done so in the same way