List of Awards

 


The GeoPRISMS Office compiles an index of all the funded proposals supported by the GeoPRISMS sequestered funds (either in part or in full).

When available, research “Nuggets” from the 2015 GeoPRISMS review, peer-reviewed publications, and data related to the grants are linked in the table.

Please email the GeoPRISMS Office at info (at) geoprisms.org if you would like to include your publications.

Please click the icon  to access associated publications.

All projects listed below have been retrieved from the NSF Award Advanced Search website.

Visit the GeoPRISMS Google Scholar Profile to browse the collection of publications issued from GeoPRISMS-funded projects.

GeoPRISMS NSF Awards

Fiscal YearPrimary InvestigatorsAward NumberProposal TitleInitiativePrimary SiteField WorkData PortalScience NuggetPublications
FY20B. Buffett
B. Romanowicz
M. Manga
2025195Cooperative Institute for Dynamic Earth Research: Fluid and Magma Transport at Plate Boundaries
FY20A. Kent2025606Cascade22: A workshop to catalyze and synthesize understanding of the role of magmatism in an archetype continental arcSCDCascadia
FY20D. Schmidt2025105GeoPRISMS Synthesis Workshop: The Geological Fingerprints of Slow EarthquakesSCD
FY20M. Myers2025625GeoPRISMS Synthesis Workshop: Volatiles from Source to SurfaceRIE & SCDAll
FY20H. Janiszewski2025668Plate Boundary Structure and Deformation WorkshopRIE & SCDAll
FY20M. Guild (Postdoc)1949208 Quantifying Carbon in the Mantle Lithosphere: Concentration, sources, and forms of carbon stored in carbonates and fluid inclusions
FY20C. Lynner1949210Anisotropic imaging of the Alaska-Aleutian subduction zone from shear wave splitting analysesSCDA&A
FY20A. Kent1948862Collaborative Research: Synthesizing arc-scale geochemical, petrologic, and geophysical datasets to investigate causes of volcanic diversity in the Cascade ArcSCDCascadia
FY20C. Till1949173Collaborative Research: Synthesizing arc-scale geochemical, petrologic, and geophysical datasets to investigate causes of volcanic diversity in the Cascade ArcSCDCascadia
FY20G. Abers1948834Collaborative Research: Synthesizing arc-scale geochemical, petrologic, and geophysical datasets to investigate causes of volcanic diversity in the Cascade ArcSCDCascadia
FY20E. Roland1947713Collaborative Research: Behavior and structure on and around the megathrust revealed by the Alaska Amphibious Seismic Community ExperimentSCDA&A
FY20S. Schwartz1948504Collaborative Research: Behavior and structure on and around the megathrust revealed by the Alaska Amphibious Seismic Community ExperimentSCDA&A
FY20G. Abers1949130Collaborative Research: Behavior and structure on and around the megathrust revealed by the Alaska Amphibious Seismic Community ExperimentSCDA&A
FY20H. Savage2024104Support for the 2020 Gordon Research Conference/Seminar on Rock Deformation: Combining Laboratory Measurements with Observational Constraints to Understand Tectonic Processes
FY20B. Smith-Konter (Postdoc Kyle Murray)1949073Contrasting active magma- and fault-dominated segments of the East African Rift through the synthesis of InSAR and GPS time series: Implications for rifting dynamics and hazardsRIEEARS
FY20A. Becel1947758Collaborative Research:Incoming plate and forearc structure of the Semidi and SW Kodiak Segments offshore Alaska Peninsula from 3-D active-source and local earthquake tomographySCDA&A
FY20J. Pablo Canales1948087Collaborative Research:Incoming plate and forearc structure of the Semidi and SW Kodiak Segments offshore Alaska Peninsula from 3-D active-source and local earthquake tomographySCDA&A
FY20H. Van Avendonk
N. Bangs
N. Tisato
1949171 Study of the impact of seamount subduction on the outer wedge of the Hikurangi margin from combined lab analyses of rock properties and marine seismic dataSCDNew Zealand
FY20J. Dufek (Postdoc Leighton Watson)1949219Constraining properties of pyroclastic density currents with remote infrasound and seismic observations
FY20C. Bucholz1949160Collaborative Research: Evaluating the Exhumation History of the Aleutians with Zircon and Apatite ThermochronologySCDA&A
FY20E. Cooperdock1949148Collaborative Research: Evaluating the Exhumation History of the Aleutians with Zircon and Apatite ThermochronologySCDA&A
FY20M. Bodmer (Postdoc)1948961Linking Mantle Structure and Dynamics to the Landscape Evolution of the Cascadia ForearcSCDCascadia
FY20M. Fraters (Postdoc)1948902Linking Surface Deformation to Slab-Mantle Flow in the Cascadia Subduction Zone through 3D Dynamic ModelsSCDCascadia
FY19T. Plank1941699Aleutian - Alaska Workshop at Lamont for GeoPRISMS SynthesisSCDAlaska & Aleutian
FY19D. Lizarralde1753704Collaborative Research: A Seismic Study of Oceanic-Arc Crustal Construction Processes at the Archetypal Andreanof Segment of the Aleutian ArcSCDAlaska & Aleutian
FY19D. Shillington1753676Collaborative Research: A Seismic Study of Oceanic-Arc Crustal Construction Processes at the Archetypal Andreanof Segment of the Aleutian ArcSCDAlaska & Aleutian
FY19Z. Eilon1753722Collaborative Research: Lithosphere-scale anisotropic imaging across the Eastern North American Margin's ocean-continent transitionRIEENAMLynner, Colton and J. A. Van Avendonk, Harm and Bécel, Anne and Christeson, Gail L. and Dugan, Brandon and Gaherty, James B. and Harder, Steven and Hornbach, Matthew J. and Lizarralde, Daniel and Long, Maureen D. and Magnani, M. Beatrice and Shillington,. "The Eastern North American Margin Community Seismic Experiment: An Amphibious Active? and Passive?Source Dataset," Seismological Research Letters, v.91, 2019. doi:10.1785/0220190142
FY19C. Lynner2001145Collaborative Research: Lithosphere-scale anisotropic imaging across the Eastern North American Margin's ocean-continent transitionRIEENAM
FY19W. Zhu1926627Research Coordination Network: In situ Studies of Rock Deformation (ISRD)
FY19T. Rooney1850606Assessing the relationship between strain localization and magmatism during rift evolutionRIEEARS
FY19A. Kent (Postdoc Fiona Couperthwaite)1850779GeoPRISMS Postdoctoral Scholar proposal: Unravelling monogenetic volcanism in the Cascades Volcanic RangeSCDCascadia
FY19J. Barnes1850711Collaborative Research: Fluid-mobile element cycling (halogens, boron, lithium) through the forearc of Costa RicaSCDCentral America
FY19J. de Moor1850699Collaborative Research: Fluid-mobile element cycling (halogens, boron, lithium) through the forearc of Costa RicaSCDCentral America
FY19M. Ishii1850831Elucidating the Mechanics of Tsunami Generating Earthquake Rupture with Long Period Seismology
SCD
FY19D. Schmidt (Postdoc John DeSanto)1850685GeoPRISMS Postdoctoral Scholar: Refining GPS-Acoustic Processing to Measure Cascadia SubductionSCDCascadia
FY19P. Skemer1848824Rheology and microstructural evolution of serpentineSCD
FY19R. Rudnick19184782019 Interior of the Earth GRC/GRS
FY19P. van Keken1850634Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamicsSCD
FY19I. Wada1850683Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamicsSCD
FY19S. Penniston-Dorland1850786Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamicsSCD
FY19B. Dragovic1850713Collaborative Research: Constraining the thermal conditions of the subduction interface by integrating petrology and geodynamicsSCD
FY19V. Le Roux1852610Collaborative Research: Melange-peridotite Interactions in the Source of Arc MagmasSCD
FY19M. Behn1852680Collaborative Research: Melange-peridotite Interactions in the Source of Arc MagmasSCD
FY19M. Brounce
H. Ford
1849700Mantle volatiles and attenuation in the East African RiftRIEEARS
FY19H. Tobin1828096RCN: A Research Coordination Network for the SZ4D Initiative
FY19B. Schmandt1844345Workshop on advancing integrative volcanology with community experiments: Albuquerque, NM, November 28-30, 2018
FY19T. Becker1824343RCN: Planning for a Modeling Collaboratory for Subduction Zone ScienceSCD
FY18M. Torres1753665Collaborative Research: Slow-slip and fluid flow response offshore New Zealand - Probing the nature of the margin hydrogeochemical systemSCDNew Zealand
FY18E. Solomon1753617Collaborative Research: Slow-slip and fluid flow response offshore New Zealand - Probing the nature of the margin hydrogeochemical systemSCDNew Zealand
FY18R. Evans1654619Collaborative Research: Marine EM survey of fluids in the Alaskan megathrustSCDAlaska & Aleutian
FY18K. Key
S. Constable
1654652Collaborative Research: Marine EM survey of fluids in the Alaskan megathrustSCDAlaska & Aleutian
FY18J. Conder1753637Collaborative Research: Geochemical and geodynamic investigation of lithospheric drip viability beneath the East African RiftRIEEARS
FY18T. Furman1753696Collaborative Research: Geochemical and geodynamic investigation of lithospheric drip viability beneath the East African RiftRIEEARS
FY18W. Nelson1753748Collaborative Research: Geochemical and geodynamic investigation of lithospheric drip viability beneath the East African RiftRIEEARS
FY18S. Jammes1753574Collaborative Research: Effect of contrasting structural and compositional inheritances on the development of rifting marginsRIE• Jammes S., L.L. Lavier. Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins J. Geophys. Geosphere, 15(2), 407-422 (2019). doi.org/10.1130/GES01686.1
FY18L. Lavier1753555Collaborative Research: Effect of contrasting structural and compositional inheritances on the development of rifting marginsRIE• Jammes S., L.L. Lavier. Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins J. Geophys. Geosphere, 15(2), 407-422 (2019). doi.org/10.1130/GES01686.1
FY18J. Morgan1824129Support for 8 Gordon Research Conference and Gordon Research Seminar on Rock Deformation
FY18S. Webb1754929Collaborative Research: Along Strike Variation in Shallow, Offshore Strain Accumulation and Slow Slip at Hikurangi Subduction Margin, New ZealandSCDNew Zealand
FY18D. Chadwell1754767Collaborative Research: Along Strike Variation in Shallow, Offshore Strain Accumulation and Slow Slip at Hikurangi Subduction Margin, New ZealandSCDNew Zealand
FY18T. Fischer1757415NSFGEO-NERC: Collaborative Research: Linking geophysics and volcanic gas measurements to constrain the transcrustal magmatic system at the Altiplano-Puna Deformation Anomaly
FY18S. Mana1753734Collaborative Research: East African Rift Tephra Database [EARThD]: a compilation documenting and analyzing explosive volcanism in East AfricaRIEEARS
FY18E. DiMaggio1753738Collaborative Research: East African Rift Tephra Database [EARThD]: a compilation documenting and analyzing explosive volcanism in East AfricaRIEEARS
FY18G. Yogodzinski1753518 Collaborative Research: Investigating Initiation and History of the Aleutian Arc and Composition and Significance of North Pacific Seafloor via Dredge Samples from the R/V SonneSCDAlaska & Aleutian
FY18B. Jicha1753492 Collaborative Research: Investigating Initiation and History of the Aleutian Arc and Composition and Significance of North Pacific Seafloor via Dredge Samples from the R/V SonneSCDAlaska & Aleutian
FY18B. Dugan
P. Sava
1753680Exploring submarine slope failures with seismic data and physical laboratory experimentsRIEENAM
FY17A. Férot (former PI D. Saffer)1606738GeoPRISMS Office Support
FY17H.P. Johnson1753660 A proposed study of the dynamics of the Hikurangi New Zealand marginSCDNew Zealand
FY17T. Fischer1664246RAPID: Acquisition of a delta ray isotope ratio spectrometer for Earth Science ResearchSCDAlaska & Aleutian
FY17B. Magnani1654781Collaborative Research: Pre- and syn-rift extension, magmatism and segmentation along the Eastern North American MarginRIEENAM
FY17L. Worthington1654804Collaborative Research: Pre- and syn-rift extension, magmatism and segmentation along the Eastern North American MarginRIEENAM
FY17D. Shillington1654629Along-strike variations in synrift magmatism on the Eastern North American MarginRIEENAM
FY17R. Buck
J.A. Olive
1654745Evaluating mechanisms for the formation, propagation and evolution of volcanic rifts and marginsRIE• Olive J-A., T.J. Crone. Smoke Without Fire: How Long Can Thermal Cracking Sustain Hydrothermal Circulation in the Absence of Magmatic Heat? J. Geophys. Res.: Solid Earth, 123, 4561–4581 (2018). doi/10.1029/2017JB014900
FY17H. Kitajima (postdoc Tamara Jeppson)1654586Experimental investigations on the deformation behavior of sediment in the shallow region of the Nankai, North Sumatra, and Aleutian subduction zonesSCDAlaska & Aleutian
FY17C. Scholz
J. Muirhead
1654518Collaborative Research: Constraining the flux of magma and magmatic CO2 during early-stage rifting in East AfricaRIEEARS• Muirhead, J.D., et al., Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature, 582, 67-72 (2020) doi.org/10.1038/s41586-020-2328-3

• Muirhead, J.D., Wright L.J.M., Scholz C.A., Rift evolution in regions of low magma input in East Africa. EPSL, 506, 332-346 (2019) doi.org/10.1016/j.epsl.2018.11.004

• Oliva S.J., Ebinger C.J., Wauthier C., Muirhead J.D., Roecher S.W., Rivalta E., Heimann S. Insights Into Fault‐Magma Interactions in an Early‐Stage Continental Rift From Source Mechanisms and Correlated Volcano‐Tectonic Earthquakes. Geophys. Res. Lett., 46(4), 2065-2074 (2019) doi.org/10.1029/2018GL080866

• Magee C., Ernst R.E., Muirhead J., Phillips T., Jackson C A.-L.Magma Transport Pathways in Large Igneous Provinces: Lessons from Combining Field Observations and Seismic Reflection Data. In: Srivastava R., Ernst R., Peng P. (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology, pp 45-85 (2019) doi.org/10.1007/978-981-13-1666-1_2

• Magee C., Muirhead J., Schofield N., Walker R.J., Galland O., Holford S. et al. Structural signatures of igneous sheet intrusion propagation. J of Structural Geology, (2018) doi.org/10.1016/j.jsg.2018.07.010

• Muirhead, J.D., S.A. Kattenhorn. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa. J of Structural Geology, 106, 1-18 (2018) doi:10.1038/s41467-018-03865-x

• Le Corvec N., J.D. Muirhead, J.D. White. Shallow magma diversions during explosive diatreme-forming eruptions. Nature Communications, 9, 1959 (2018) doi.org/10.1016/j.jsg.2017.11.004
FY17T. Fischer1654433Collaborative Research: Constraining the flux of magma and magmatic CO2 during early-stage rifting in East AfricaRIEEARS• Muirhead, J.D., et al., Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature, 582, 67-72 (2020) doi.org/10.1038/s41586-020-2328-3
FY17J. Dufek1836651
(1654557)
Collaborative Research: Constraining the flux of magma and magmatic CO2 during early-stage rifting in East AfricaRIEEARS• Muirhead, J.D., et al. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature, 582, 67-72 (2020) doi.org/10.1038/s41586-020-2328-3
FY17A. Kent1654275Collaborative research: Assessing changes in the state of a magma storage system over caldera-forming eruption cycles, a case study at Taupo Volcanic Zone, New ZealandSCDNew Zealand
FY17K. Cooper1654506Collaborative research: Assessing changes in the state of a magma storage system over caldera-forming eruption cycles, a case study at Taupo Volcanic Zone, New ZealandSCDNew Zealand
FY17C. Deering1654128Collaborative research: Assessing changes in the state of a magma storage system over caldera-forming eruption cycles, a case study at Taupo Volcanic Zone, New ZealandSCDNew Zealand
FY17G. Abers1654568Alaska Amphibious Community Seismic ExperimentSCDAlaska & Aleutian icon-external-link  icon-external-link 
FY17H. Van Avendonk
S. Gulick
1654689Collaborative Research: SISIE: South Island, New Zealand, Subduction Initiation ExperimentSCDNew Zealandicon-external-link • Gurnis, M., et al. Incipient subduction at the contact with stretched continental crust: The Puysegur Trench. EPSL, 520, 212-219 (2019). doi.org/10.1016/j.epsl.2019.05.044
FY17M. Gurnis
J. Stock
1654766Collaborative Research: SISIE: South Island, New Zealand, Subduction Initiation ExperimentSCDNew Zealand icon-external-link • Gurnis, M., et al. Incipient subduction at the contact with stretched continental crust: The Puysegur Trench. EPSL, 520, 212-219 (2019). doi.org/10.1016/j.epsl.2019.05.044
FY17S. Nooner1656298Collaborative Proposal: Measuring strain along the Aleutian subduction zone trench to better constrain seismic and tsunami hazardSCDAlaska & Aleutian
FY17S. Webb1656413Collaborative Proposal: Measuring strain along the Aleutian subduction zone trench to better constrain seismic and tsunami hazardSCDAlaska & Aleutian
FY17D. Chadwell1656401Collaborative Proposal: Measuring strain along the Aleutian subduction zone trench to better constrain seismic and tsunami hazardSCDAlaska & Aleutian
FY16H. Tobin1558574Collaborative Research: A community 3D seismic investigation of fault property controls on slow-slip along the Hikurangi megathrustSCDNew Zealand
FY16E. Silver1558440Collaborative Research: A community 3D seismic investigation of fault property controls on slow-slip along the Hikurangi megathrustSCDNew Zealand
FY16G. Moore1559008Collaborative Research: A community 3D seismic investigation of fault property controls on slow-slip along the Hikurangi megathrustSCDNew Zealand
FY16N. Bangs1559298Collaborative Research: A community 3D seismic investigation of fault property controls on slow-slip along the Hikurangi megathrustSCDNew Zealand
FY16J. Barnes
J. Lassiter
1455432Fluid-mobile and volatile element (Cl, B, and Li) cycling through the forearc: Case study of cold and thermal spring geochemistries from the Hikurangi accretionary prism, New ZealandSCDNew Zealand• Barnes J.D., Cullen J., Barker S., Agostini S., Penniston-Dorland S., et al. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere, 15 (2019). doi.org/10.1130
/GES02057.1
FY16R. King1551753Collaborative Research: A community velocity field for East AfricaRIEEARSicon-external-link
FY16R. Bendick1551823Collaborative Research: A community velocity field for East AfricaRIEEARSicon-external-link
FY16A. Becel1551807Final stages of breakup and early spreading history of the Eastern North America passive margin from multichannel seismic dataRIEENAM• Davis J.K. , A. Bécel, W.R.Buck. Estimating emplacement rates for seaward-dipping reflectors associated with the U.S. East Coast Magnetic Anomaly. Geophys Journ Int, 215 (3), 1594–1603, (2018). doi: 10.1093/gji/ggy360
FY16H. Van Avendonk1551717Seismic study of mantle deformation and melt extraction during continental breakup in the ENAM primary siteRIEENAM
FY16L. Wallace1551876Collaborative Research: Improving models of interseismic locking and slow slip events in Cascadia and New ZealandSCDCascadia, New Zealand• Yohler, R., Bartlow, N., Wallace, L.M., Williams, C. Time‐Dependent Behavior of a Near‐Trench Slow‐Slip Event at the Hikurangi Subduction Zone. Geochem, Geophys, Geosys, 20-8 (2019). doi.org/10.1029/2019GC008229

• Wallace, L.M., S. Hreinsdóttir, S. Ellis, I. Hamling, E. D’Anastasio, E., P. Denys. Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophysical Research Letters, 45 (2018). https://doi.org/10.1002/2018GL077385

• Williams C.A., L.M. Wallace. The Impact of Realistic Elastic Properties on Inversions of Shallow Subduction Interface Slow Slip Events Using Seafloor Geodetic Data. Geophys. Res. Lett, 45 (2018). https://doi.org/10.1029/2018GL078042

• Wallace L.M., Y. Kaneko, S. Hreinsdóttir, I. Hamling, Z. Peng, N. Bartlow, E. D’Anastasio, B. Fry. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geosci. 10, 765-770 (2017). doi:10.1038/ngeo3021
FY16N. Bartlow1905098
1551929
Collaborative Research: Improving models of interseismic locking and slow slip events in Cascadia and New ZealandSCDCascadia, New Zealand• Yohler, R., Bartlow, N., Wallace, L.M., Williams, C. Time‐Dependent Behavior of a Near‐Trench Slow‐Slip Event at the Hikurangi Subduction Zone. Geochem, Geophys, Geosys, 20-8 (2019). doi.org/10.1029/2019GC008229

• Wallace L.M., Y. Kaneko, S. Hreinsdóttir, I. Hamling, Z. Peng, N. Bartlow, E. D’Anastasio, B. Fry. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geosci. 10, 765-770 (2017). doi:10.1038/ngeo3021
FY16G. Yogodzinski1551640Collaborative Research: Building an International component in the Aleutian-Alaska Primary Site through US participation in research cruises of the German R/V SonneSCDAlaska & Aleutian• Yogodzinski G.M., P.B. Kelemen, K. Hoernle, S.T. Brown, I. Bindeman, J.D. Vervoort, K.W.W. Sims, M. Portnyagin, R. Werner. Sr and O isotopes in western Aleutian seafloor lavas: Implications for the source of fluids and trace element character of arc volcanic rocks. Earth and Planetary Sci. 475, 169-180 (2017). doi.org/10.1016/j.epsl.2017.07.007
FY16B. Jicha1551657Collaborative Research: Building an International component in the Aleutian-Alaska Primary Site through US participation in research cruises of the German R/V SonneSCDAlaska & Aleutian
FY16M. Newcombe (postdoc; former PI: Philipp Ruprecht)1551868Magma ascent and eruption in the Aleutian ArcSCDAlaska & Aleutian• Ferriss, E., T. Plank, M. Newcombe, D. Walker, E. Hauri. Rates of dehydration of olivines from San Carlos and Kilauea Iki. Geochim. Cosmochim. Acta. 242, 165-190 (2018) https://doi.org/10.1016/j.gca.2018.08.050

• Newcombe, M.E., Beckett, J.R., Baker, M.B., Newmand, S., Guana, Y., Eiler, J.M., Stolper, E.M. Effects of pH2O, pH2 and fO2 on the diffusion of H-bearing species in lunar basaltic liquid and an iron-free basaltic analog at 1 atm. Geochimica et Cosmochimica Acta, 259, 316-343 (2019) doi.org/10.1016/j.gca.2019.05.033
FY16R. Detrick
A. Meltzer
1636548Subduction Zone Observatories WorkshopSCD
FY16S. Schwartz1551683Collaborative Research: Revealing the environment of shallow slow slipSCDNew Zealand
FY16R. Abercrombie1551758Collaborative Research: Revealing the environment of shallow slow slipSCDNew Zealand
FY16A. Sheehan1551922Collaborative Research: Revealing the environment of shallow slow slipSCDNew Zealand
FY16T. Fischer1551808Collaborative Research: Investigating the relationships among subduction character, volatile cycling, and eruptive activity along the Aleutian ArcSCDAlaska & Aleutian• Fisher, T.P., T.M. Lopez. First airborne samples of a volcanic plume for δ13C of CO2 determinations. Geophys. Res. Lett. 43, 7, 3272-3279 (2016). doi.org/10.1002/2016GL068499
FY16T. Lopez1551978Collaborative Research: Investigating the relationships among subduction character, volatile cycling, and eruptive activity along the Aleutian ArcSCDAlaska & Aleutian• Fisher, T.P., T.M. Lopez. First airborne samples of a volcanic plume for δ13C of CO2 determinations. Geophys. Res. Lett. 43, 7, 3272-3279 (2016). doi.org/10.1002/2016GL068499
FY16D.S. Stamps1551864Collaborative Research: Quantifying plume-lithosphere interactions with GNSS geodesy, seismology, and geodynamic modelingRIEEARS
FY16A. Nyblade1551767Collaborative Research: Quantifying plume-lithosphere interactions with GNSS geodesy, seismology, and geodynamic modelingRIEEARS
FY16A. Pommier1551200Collaborative Research: Experimental investigation of the electrical properties of hydrous silicate melts in subduction contextSCD• Pommier A., Evans R.L., Electrical Investigation of Natural Lawsonite and Application to Subduction Contexts. JGR Solid Earth. 124(2), 1430-1442 (2019). doi.org/10.1029/2018JB016899

• Pommier A., Evans R.L., Constraints on fluids in subduction zones from electromagnetic data. Geosphere. 13(4), 1026-1041 (2017). doi.org/10.1130/GES01473.1
FY16W. Nelson1551835Collaborative Research: Constraining the temporal evolution of mantle plume contributions to magmatism in the Turkana DepressionRIEEARS
FY16J. Kappelman
T. Spell
1551920Collaborative Research: Constraining the temporal evolution of mantle plume contributions to magmatism in the Turkana DepressionRIEEARS
FY16T. Rooney1551872Collaborative Research: Constraining the temporal evolution of mantle plume contributions to magmatism in the Turkana DepressionRIEEARS• Rooney T.O. The Cenozoic magmatism of East Africa: Part IV – The terminal stages of rifting preserved in the Northern East African Rift System. Lithos. 105381 (2020). oi.org/10.1016/j.lithos.2020.105381

• Rooney T.O. The Cenozoic magmatism of East Africa: Part III – Rifting of the craton. Lithos. 105390 (2020). doi.org/10.1016/j.lithos.2020.105390

• Rooney T.O. The Cenozoic magmatism of East Africa: Part II – Rifting of the mobile belt. Lithos. 105291 (2019). doi.org/10.1016/j.lithos.2019.105291

• Rooney T.O. The Cenozoic magmatism of East-Africa: Part I — Flood basalts and pulsed magmatism. Lithos. 286-287, 264-301 (2017). doi.org/10.1016/j.lithos.2017.05.014
FY16B. Hanan1551820Collaborative Research: Constraining the temporal evolution of mantle plume contributions to magmatism in the Turkana DepressionRIEEARS
FY15N. Bangs1457221Investigation of the hydrogeologic role of faults in the downgoing plate through comparison of Central America, Cascadia, Nankai, and Alaska subduction zonesSCDCentral America, Cascadia, Nankai, Alaska & AleutianAn investigation of fault zone hydrogeology in subducting plates
FY15P. Kelemen
S. Goldstein
Y. Cai
1457293Collaborative Research: Focused study of Aleutian plutons and their host rocks: Understanding the building blocks of continental crustSCDAlaska & Aleutian icon-external-link Origin and evolution of the lower crust in magmatic arcs and continental crust• Cai, Y, M.E. Rioux, P.B. Kelemen, S.L. Goldstein, L. Bolge. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc: New isotope, trace element and geochronological data. Earth Planet. Sci. Lett. 431, 119 (2015). doi.org/10.1016/j.epsl.2015.07.058
FY15J. Freymueller1457361Interseismic Slip deficit at the edge of a locked patch: Shumagin Islands, AlaskaSCDAlaska & AleutianInterseismic Slip Deficit at the Edge of a Locked Patch: Shumagin Islands, Alaska• Li, S., and J.T. Freymueller. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone. Geophys. Res. Lett., 45, (2018). https://doi.org/10.1002/2017GL076761
FY15N. Bennington1456749Collaborative Research: Magnetotelluric and seismic investigations of arc melt generation, deliver and storage beneath Okmok VolcanoSCDAlaska & Aleutian icon-external-link Magnetotelluric and Seismic Investigation of Arc Melt Generation, Delivery, and Storage beneath Okmok Volcano
FY15K. Key1456710Collaborative Research: Magnetotelluric and seismic investigations of arc melt generation, deliver and storage beneath Okmok VolcanoSCDAlaska & Aleutian icon-external-link Magnetotelluric and Seismic Investigation of Arc Melt Generation, Delivery, and Storage beneath Okmok Volcano
FY15E. Mittelstaedt1456664Emplacement of regularly spaced volcanic centers in the East African Rift: Melt production or melt extraction?RIEEARSEmplacement of regularly spaced volcanic centers in the East African Rift: Melt production or melt extraction?
FY15T. Plank1456814Collaborative Research: From the slab to the surface: Origin, storage, ascent and eruption of volatile-bearing magmasSCDAlaska & Aleutian icon-external-link From the Slab to the Surface: Origin, Storage, Ascent, and Eruption of Volatile-Bearing Magmas• Werner C., et al. Linking subsurface to surface using gas emission and melt inclusion data at Mount Cleveland Volcano, Alaska. G3. (2020). 10.1029/2019GC008882

• Werner C., C. Kern, D. Coppola, J.J. Lyons, P.J. Kelly, K.L. Wallace, D.J. Schneider, R.L. Wessels. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales. JVGR. 337, 98-110 (2017). doi.org/10.1016/j.jvolgeores.2017.03.001

• Lloyd A.S., E. Ferriss, P. Ruprecht, E.H. Hauri, B.R. Jicha, T. Plank. An Assessment of Clinopyroxene as a Recorder of Magmatic Water and Magma Ascent Rate. Journal of Petrology. 57, 10, 1865-1886 (2016).doi.org/10.1093/petrology/egw058

• Nielsen S.G., G. Yogodzinski, J. Prytulak, T. Plank, S.M. Kay, R.W. Kay, J. Blusztajn, J.D. Owens, M. Auro, T. Kading. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes. Geochim. Cosmochim. Acta. 181, 217-237 (2016). doi.org/10.1016/j.gca.2016.03.010
FY15D. Roman
E. Hauri
1456939Collaborative Research: From the slab to the surface: Origin, storage, ascent and eruption of volatile-bearing magmasSCDAlaska & Aleutian icon-external-link From the Slab to the Surface: Origin, Storage, Ascent, and Eruption of Volatile-Bearing Magmas• Werner C., et al. Linking subsurface to surface using gas emission and melt inclusion data at Mount Cleveland Volcano, Alaska. G3. (2020). 10.1029/2019GC008882

• Janiszewski H.A., L.S. Wagner, D.C. Roman. Aseismic mid-crustal magma reservoir at Cleveland Volcano imaged through novel receiver function analyses. Sci Rep. 10, 1780 (2020). doi.org/10.1038/s41598-020-58589-0

• Werner c., C. Kern, D. Coppola, J.J. Lyons, P.J. Kelly, K.L. Wallace, D.J. Schneider, R.L. Wessels. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales. JVGR. 337, 98-110 (2017). doi.org/10.1016/j.jvolgeores.2017.03.001
FY14G. Abers1444275 MARGINS: Collaborative Research: Illuminating the Architecture of the Greater Mount St. Helens Magmatic System from Slab to SurfaceSCDCascadia• Crosbie K.J., G.A. Abers, M.E. Mann, H.A. Janiszewski, K.C. Creager, C. Ulberg, S. Moran. Shear velocity structure from ambient noise and teleseismic surface wave tomography in the Cascades around Mount St. Helens J. Geophs. Res., v. in press. (2019)doi.org/10.1029/2019JB017836

• Eakin C.M., E.A. Wirth, A. Wallace, C.W. Ulberg, K.C. Creager, G.A. Abers. SKS splitting beneath Mount St. Helens: Constraints on subslab mantle entrainment. Geochem, Geophys, Geosys, 20, 4202–4217 (2019)doi.org/10.1029/2019GC008433

• Mann, M.E., G.A. Abers, K.J. Crosbie, K.C. Creager, C. Ulberg, S. Moran, S. Rondenay. Imaging subduction beneath Mount St. Helens: implications for slab dehydration and magma transport. Geophys. Res. Lett., 46, 3163–3171 (2019)doi.org/10.1029/2018GL081471
FY15R. Cole1456630RUI: Magmatic evolution leading up to the modern Aleutian Arc on the Alaska PeninsulaSCDAlaska & AleutianMagmatic Evolution Leading Up to the Modern Aleutian Arc on the Alaska Peninsula
FY14R. Bendick1347192Collaborative Research: Active kinematics of lithospheric extension along the East African RiftRIEEARS icon-external-link Active kinematics of lithospheric extension along the East African Rift
FY14R. King1347282Collaborative Research: Active kinematics of lithospheric extension along the East African RiftRIEEARS icon-external-link Active kinematics of lithospheric extension along the East African Rift
FY14K. Keranen
G. Abers
1347262Collaborative Research: The Aleutian megathrust from trench to base of the seismogenic zone; integration and synthesis of laboratory, geophysical and geological dataSCDAlaska & AleutianIntegrating laboratory, geophysical and geological data to understand the Aleutian megathrust from the trench to the base of the seismogenic zone• Li, J., D.J.Shillington, D.M. Saffer, A. Bécel, M.R. Nedimovic, S.C. Webb, H. Kuehn, K.M. Keranen, G.A. Abers. Connections between subducted sediment, pore-fluid pressure, and earthquake behavior along the Alaska megathrust. Geology 46 (4), 299-302 (2018). https://doi.org/10.1130/G39557.1

• Becel A., D.J. Shillington, M. Delescluse, M.R. Nedimovic, G.A. Abers, D.M. Saffer, S.C. Webb, K.M. Keranen, P.-H. Roche, J. Li, H. Kuehn. Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nature Geosci. 10, 609-613 (2017). doi:10.1038/ngeo2990

• Shillington D.J, A. Bécel, M.R. Nedimović, H. Kuehn, S.C. Webb, G.A. Abers, K.M. Keranen, J.Li, M. Delescluse, G.A. Mattei-Salicrup. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nature Geoscience 8, 961-964 (2015). doi:10.1038/ngeo2586
FY14D. Shillington
A. Bécel
M. Nedimovic
1347312Collaborative Research: The Aleutian megathrust from trench to base of the seismogenic zone; integration and synthesis of laboratory, geophysical and geological dataSCDAlaska & AleutianIntegrating laboratory, geophysical and geological data to understand the Aleutian megathrust from the trench to the base of the seismogenic zone• Li, J., D.J.Shillington, D.M. Saffer, A. Bécel, M.R. Nedimovic, S.C. Webb, H. Kuehn, K.M. Keranen, G.A. Abers. Connections between subducted sediment, pore-fluid pressure, and earthquake behavior along the Alaska megathrust. Geology 46 (4), 299-302 (2018). https://doi.org/10.1130/G39557.1

• Becel A., D.J. Shillington, M. Delescluse, M.R. Nedimovic, G.A. Abers, D.M. Saffer, S.C. Webb, K.M. Keranen, P.-H. Roche, J. Li, H. Kuehn. Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nature Geosci. 10, 609-613 (2017). doi:10.1038/ngeo2990

• Shillington D.J, A. Bécel, M.R. Nedimović, H. Kuehn, S.C. Webb, G.A. Abers, K.M. Keranen, J.Li, M. Delescluse, G.A. Mattei-Salicrup. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nature Geoscience 8, 961-964 (2015). doi:10.1038/ngeo2586
FY14D. Saffer1347343Collaborative Research: The Aleutian megathrust from trench to base of the seismogenic zone; integration and synthesis of laboratory, geophysical and geological dataSCDAlaska & AleutianIntegrating laboratory, geophysical and geological data to understand the Aleutian megathrust from the trench to the base of the seismogenic zone• Li, J., D.J.Shillington, D.M. Saffer, A. Bécel, M.R. Nedimovic, S.C. Webb, H. Kuehn, K.M. Keranen, G.A. Abers. Connections between subducted sediment, pore-fluid pressure, and earthquake behavior along the Alaska megathrust. Geology 46 (4), 299-302 (2018). https://doi.org/10.1130/G39557.1

• Becel A., D.J. Shillington, M. Delescluse, M.R. Nedimovic, G.A. Abers, D.M. Saffer, S.C. Webb, K.M. Keranen, P.-H. Roche, J. Li, H. Kuehn. Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nature Geosci. 10, 609-613 (2017). doi:10.1038/ngeo2990
FY14E. Cottrell1347248Collaborative Research: The role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arcSCDAlaska & AleutianThe role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arc
FY14K. Kelley1347330Collaborative Research: The role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arcSCDAlaska & AleutianThe role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arc
FY14M. Jackson1347377Collaborative Research: The role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arcSCDAlaska & AleutianThe role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arc• Jackson, M.G., K.T. Koga, A. Price*, J.G. Konter, A.A.P. Koppers, V.A. Finlayson, K. Konrad, E.H. Hauri, A. Kylander-Clark, K.A. Kelley, M.A. Kendrick. Deeply-dredged submarine HIMU glasses from the Tuvalu Islands, Polynesia: Implications for volatile budgets of recycled oceanic crust. Geochem. Geophys. Geosyst. 16. (2015). doi:10.1038/ngeo2990
FY14C. Marone1347344Runaway Slip: Understanding Nucleation of Subduction Megathrust Earthquakes and Slow Slip PrecursorsSCDAlaska & Aleutianden Hartog, S.A., Saffer, D.M., Spiers, C.J.. "The roles of quartz and water in controlling unstable slip in phyllosilicate-rich megathrust fault gouges," Earth, Planets, Space, 2014, p. 66. doi:doi:10.1186/1880-5981-66-78

Fang, Y., den Hartog, S. A. M., Elsworth, D., Marone, C., & Cladouhos, T.. "Anomalous distribution of microearthquakes in the Newberry Geothermal Reservoir: Mechanisms and implications," Journal of Geothermics, v.63, 2016. doi:doi:10.1016/j.geothermics.2015.04.005

den Hartog, S. A. M., & Spiers, C. J.. "A microphysical model for fault gouge friction applied to subduction megathrusts," Journal of Geophysical Research: Solid Earth, v.119, 2014, p. 1510. doi:doi:10.1002/2013JB010580

Den Hartog, S. A. M., Saffer, D. M., & Spiers, C. J.. "The roles of quartz and water in controlling unstable slip in phyllosilicate-rich megathrust fault gouges," Earth, Planets, Space, 2014. doi:doi:10.1186/1880-5981-66-78
FY14S. DeBari1347794Collaborative Research: The Rosario Segment of the Cretaceous Alisitos Oceanic Arc (Baja California, Mexico): An outstanding field analog to the Izu Bonin ArcSCDIBM
Gulf of California
• Morris, R.A., DeBari, S.M., Busby, C., Medynski, S., Jicha, B.R. Building Arc Crust: Plutonic to Volcanic Connections in an Extensional Oceanic Arc, the Southern Alisitos Arc, Baja California. J. Pet. 60, 6, 1195-1228 (2019) doi.org/10.1093/petrology/egz029
FY14G. Abers1446970Collaborative Research: the role of fluids in intermediate-depth seismicity and wedge anisotropy: Case studies for Cascadia and Alaska, with a comparison to JapanSCDAlaska & Aleutian, Cascadia
FY13D. Chadwell1249876Constraining slip distribution of the Cascadia Subduction Zone offshore Central Oregon with seafloor geodesySCDCascadia icon-external-link Seafloor Geodesy
FY13T. Lopez (postdoc)1250148Geochemical constraints on the source, flux, migration, and seismic signature of volcanic fluids, Katmai Volcanic Cluster, AlaskaSCDAlaska & Aleutian icon-external-link Geochemical constraints on the source, flux, migration and seismic signatures of volcanic fluids, Katmai Volcanic Cluster, Alaska• Lopez T., F. Tassi, A. Aiuppa, B. Galle, A.L. Rizzo, J. Fiebig, F. Capecchiacci, G. Giudice, S. Caliro, G. Tamburello. Geochemical constraints on volatile sources and subsurface conditions at Mount Martin, Mount Mageik, and Trident Volcanoes, Katmai Volcanic Cluster, Alaska. JVGR. 347, 64-81 (2017). doi.org/10.1016/j.jvolgeores.2017.09.001
FY13R. Harris1249552Thermal structure of the Cascadia subduction zone, Grays Canyon Discovery Corridor, WashingtonSCDCascadia
Alaska & Aleutian
 icon-external-link 
FY13P. van Keken1249353Collaborative Research: the role of fluids in intermediate-depth seismicity and wedge anisotropy: Case studies for Cascadia and Alaska, with a comparison to JapanSCDCascadia
Alaska & Aleutian
Morishige M. A new regime of slab-mantle coupling at the plate interface and its possible implications for the distribution of volcanoes. EPSL 8, 262-271 (2015). doi.org/10.1016/j.epsl.2015.07.011• Abers G.A., P.E. van Keken, B.R. Hacker. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geosci. 10, 333-337 (2017).
doi:10.1038/ngeo2922
FY13B. Hacker1249486Collaborative Research: the role of fluids in intermediate-depth seismicity and wedge anisotropy: Case studies for Cascadia and Alaska, with a comparison to JapanSCDCascadia
Alaska & Aleutian
• Abers G.A., P.E. van Keken, B.R. Hacker. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geosci. 10, 333-337 (2017).
doi:10.1038/ngeo2922
FY13G. Abers1249703Collaborative Research: the role of fluids in intermediate-depth seismicity and wedge anisotropy: Case studies for Cascadia and Alaska, with a comparison to JapanSCDCascadia• Abers G.A., P.E. van Keken, B.R. Hacker. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geosci. 10, 333-337 (2017).
doi:10.1038/ngeo2922

• Abers G.A., B.R. Hacker. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. G3. 17, 2, 616-624 (2016). doi:10.1002/2015GC006171
FY13E. Johnson1249438Collaborative Research: Virginia’s volcanoes: a window into Eastern North America mantle processesRIEENAMThe Youngest Magmatic Event in Eastern North America• Mazza S.E.,  E. Gazel, E.A. Johnson, M. Bizimis, R. McAleer, C. Berk Biryol. Post‐rift magmatic evolution of the eastern North American “passive‐aggressive” margin. G3. 18, 1, 3-22 (2017). doi.org/10.1002/2016GC006646
FY13E. Gazel1249412Collaborative Research: Virginia’s volcanoes: a window into Eastern North America mantle processesRIEENAMThe Youngest Magmatic Event in Eastern North America• Mazza S.E.,  E. Gazel, E.A. Johnson, M. Bizimis, R. McAleer, C. Berk Biryol. Post‐rift magmatic evolution of the eastern North American “passive‐aggressive” margin. G3. 18, 1, 3-22 (2017). doi.org/10.1002/2016GC006646
FY13B. Hallet1250130Collaborative Proposal: Modeling sediment production from glaciers off south-central Alaska during quaternary climate oscillationsSCDAlaska & Aleutian
FY13P. Koons
S. Birkel
1249909Collaborative Proposal: Modeling sediment production from glaciers off south-central Alaska during quaternary climate oscillationsSCDAlaska & AleutianFerm GeoPRISMS: Retreating Glacier in Homogeneous Valley
FY13J. Ritsema
(former PI P. van Keken)
1339783GeoPRISMS Office Support
FY13H. Van Avendonk
G. Christeson
1348454Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13M. Hornbach
M.B. Magnani
1348124Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13S. Harder1347024Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13M. Long1347310Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13B. Dugan1348228Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13P. Wiita1348934Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13D. Shillington
J. Gaherty
A. Bécel
1347498Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM icon-external-link The GeoPRISMS Eastern North American Margin Community Seismic Experiment (ENAM CSE)• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13D. Lizarralde1348342Collaborative Research: A community seismic experiment targeting the pre-, syn-, and post-rift evolution of the Mid Atlantic US marginRIEENAM• Lynner C. et al. The Eastern North American Margin Community Seismic Experiment: An Amphibious Active‐ and Passive‐Source Dataset. Seismological Res. Lett. 91, 1, 533-540 (2019). doi.org/10.1785/0220190142
FY13D. McGee (former PI M. Benoit)1251329Collaborative Research: Mantle dynamics, lithospheric structure, and topographic evolution of the Southeastern US Continental MarginRIEENAM icon-external-link GeoPRISMS and EarthScope education and outreach to predominantly undergraduate institutions in Eastern North America via the MAGIC deployment• Servali A., Long M.D., Park J., Benoit M.H., Aragon J.C. Love-to-Rayleigh scattering across the eastern North American passive margin. Tectonophysics. 776, 5 (2020). doi.org/10.1016/j.tecto.2020.228321

• Evans R.L., Benoit M.H., Long M.D., Elsenbeck J., Ford H.A., Zhu J., Garcia X. Thin lithosphere beneath the central Appalachian Mountains: A combined seismic and magnetotelluric study. EPSL. 519, 308-316 (2019). doi.org/10.1016/j.epsl.2019.04.046
• Long M.D., Benoit M.H., Aragon J.C., King S.D. Seismic imaging of mid-crustal structure beneath central and eastern North America: Possibly the elusive Grenville deformation?. Geology. 47, 4 (2019). doi.org/10.1130/G46077.1
FY13S. King1250988Collaborative Research: Mantle dynamics, lithospheric structure, and topographic evolution of the Southeastern US Continental MarginRIEENAM icon-external-link GeoPRISMS and EarthScope education and outreach to predominantly undergraduate institutions in Eastern North America via the MAGIC deployment• Long M.D., Benoit M.H., Aragon J.C., King S.D. Seismic imaging of mid-crustal structure beneath central and eastern North America: Possibly the elusive Grenville deformation?. Geology. 47, 4 (2019). doi.org/10.1130/G46077.1
FY13M. Long1251515Collaborative Research: Mantle dynamics, lithospheric structure, and topographic evolution of the Southeastern US Continental MarginRIEENAM icon-external-link GeoPRISMS and EarthScope education and outreach to predominantly undergraduate institutions in Eastern North America via the MAGIC deployment• Servali A., Long M.D., Park J., Benoit M.H., Aragon J.C. Love-to-Rayleigh scattering across the eastern North American passive margin. Tectonophysics. 776, 5 (2020). doi.org/10.1016/j.tecto.2020.228321

• Evans R.L., Benoit M.H., Long M.D., Elsenbeck J., Ford H.A., Zhu J., Garcia X. Thin lithosphere beneath the central Appalachian Mountains: A combined seismic and magnetotelluric study. EPSL. 519, 308-316 (2019). doi.org/10.1016/j.epsl.2019.04.046

• Long M.D., Benoit M.H., Aragon J.C., King S.D. Seismic imaging of mid-crustal structure beneath central and eastern North America: Possibly the elusive Grenville deformation?. Geology. 47, 4 (2019). doi.org/10.1130/G46077.1
FY12K. Creager (former PI O. Bachmann)
J. Vidale
H. Houston
1144568Collaborative Research: Illuminating the architecture of the greater Mt. St. Helens magmatic systems from slab to surfaceSCDCascadia icon-external-link Results from the iMUSH Active Source Seismic Experiment• Eakin C.M., E.A. Wirth, A. Wallace, C.W. Ulberg, K.C. Creager, G.A. Abers. SKS splitting beneath Mount St. Helens: Constraints on subslab mantle entrainment. Geochem, Geophys, Geosys, 20, 4202–4217 (2019)doi.org/10.1029/2019GC008433

• Han, J., J.E. Vidale, H. Houston, D.A. Schmidt, K.C. Creager. Deep long‐period earthquakes beneath Mount St. Helens: Their relationship to tidal stress, episodic tremor and slip, and regular earthquakes. Geophys Res Lett. 45, 2241–2247 (2018)doi.org/10.1029/2019GC008433

• Ulberg, C.W., K.C. Creager, S.C. Moran, G.A. Abers, A. Levander, E. Kiser, B. Schmandt, S. Hansen, R. Crosson. Local source Vp and Vs tomography in the Mount St Helens region with the iMUSH broadband array. Geochem. Geophys. Geosys., 21, 3, e2019GC00888 (2020)doi.org/10.1029/2019GC008888
FY12A. Levander1144455Collaborative Research: Illuminating the architecture of the greater Mt. St. Helens magmatic systems from slab to surfaceSCDCascadia icon-external-link Results from the iMUSH Active Source Seismic Experiment• Kiser E., A. Levander, C. Zelt, B. Schmandt, S. Hansen, S. Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions. Geology, 46, 775–778 (2018)doi.org/10.1130/G45140.1

• Kiser E., A. Levander, C. Zelt, B. Schmandt, S. Hansen. Upper crustal structure and magmatism in southwest Washington: Vp, Vs, and Vp/Vs results from the iMUSH active-source seismic experiment. J of Geophys Res: Solid Earth, 124(7), 7067-7080 (2019). doi.org/10.1029/2018JB016203

• Kiser, E. I. Palomeras, A. Levander, C. Zelt, S. Harder, B. Schmandt, S. Hansen, K. Creager, C. Ulberg. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology, 44, 411–414 (2016). doi.org/10.1130/G37591.1
FY12A. Schultz
P. Bedrosian
1144353Collaborative Research: Illuminating the architecture of the greater Mt. St. Helens magmatic systems from slab to surfaceSCDCascadia icon-external-link Results from the iMUSH Active Source Seismic Experiment• Bedrosian P.A., J.R. Peacock, E. Bowles-Martinez, A. Schultz, G.J. Hill. Crustal inheritance and a top-down control on arc magmatism at Mount St. Helens. Nat. Geosci, 11, 865–870 (2018) doi.org/10.1038/s41561-018-0217-2
FY12G. Abers1144351Collaborative Research: Illuminating the architecture of the greater Mt. St. Helens magmatic systems from slab to surfaceSCDCascadia icon-external-link Results from the iMUSH Active Source Seismic Experiment• Eakin C.M., E.A. Wirth, A. Wallace, C.W. Ulberg, K.C. Creager, G.A. Abers. SKS splitting beneath Mount St. Helens: Constraints on subslab mantle entrainment. Geochem, Geophys, Geosys, 20, 4202–4217 (2019)doi.org/10.1029/2019GC008433
FY12N. Blair1144483The Subduction margin carbon cycle: A preliminary assessment of the distribution patterns of multicycle carbonSCDCascadia icon-external-link The Subduction Margin Carbon Cycle: A Preliminary Assessment of the Distribution Patterns of Multicycle Carbon• Kuehl S.A., C.R. Alexander, N.E. Blair, C.K. Harris, K.M. Marsaglia, A.S. Ogston, A.R. Orpin, J.J. Roering, A.J. Bever, E.L. Bilderback, L. Carter, C. Cerovski-Darriau, L.B. Childress, D.R.  Corbett, R.P. Hale, E.L. Leithold, N. Litchfield, J.M. Moriarty, M.J. Page, L.E.R. Pierce, P. Upton, J.P. Walsh. A source-to-sink perspective of the Waipaoa River margin. Earth Sci. Rev. 153, 301-334 (2016). doi.org/10.1016/j.earscirev.2015.10.001

• Leithold E.L., N.E. Blair, K.W. Wegmann. Source-to-sink sedimentary systems and global carbon burial: A river runs through it. Earth Sci. Rev. 153, 30-42 (2016). doi.org/10.1016/j.earscirev.2015.10.011
FY12E. Brodsky
postdoc Abhijit Ghosh
1144695GeoPRISMS Posdoctoral Fellowship: Systematic search and characterization of very low frequency earthquakes and offshore tremor in Cascadia using the Amphibious ArraySCDCascadiaA systematic study of very low frequency earthquakes (VLFEs) in Cascadia
FY12D. Chadwell1144493Potential contributions of Seafloor Geodesy to understanding slip behavior along the Cascadia Subduction ZoneSCDCascadia icon-external-link 
FY12B. Jicha
B. Singer
1144494Collaborative Research: A 21st century reconnaissance of Aleutian Arc inceptionSCDAlaska & AleutianEvolution of the Chemically Diverse Aleutian Island Arc• Jicha, B.R., S.M. Kay. Quantifying subduction erosion and the northward migration of volcanism in the central Aleutian arc. JVGR, 360, 84-99 (2018). https://doi.org/10.1016/j.jvolgeores.2018.06.016

• Schaen A.J., B.R. Jicha, S.M. Kay, B.S. Singer, A. Tibbetts. Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc. G3. 17, 3, 1086-1108 (2016). doi.org/10.1002/2015GC006067

• Jicha B.R, B.S. Singer, M.J. Valentine. 40Ar/39Ar Geochronology of Subaerial Ascension Island and a Re-evaluation of the Temporal Progression of Basaltic to Rhyolitic Volcanism. Journ. Pet. 54, 12, 2581-2596 (2013).  doi.org/10.1093/petrology/egt058
FY12S. Kay1144499Collaborative Research: A 21st century reconnaissance of Aleutian Arc inceptionSCDAlaska & AleutianEvolution of the Chemically Diverse Aleutian Island Arc• Schaen A.J., B.R. Jicha, S.M. Kay, B.S. Singer, A. Tibbetts. Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc. G3. 17, 3, 1086-1108 (2016). doi.org/10.1002/2015GC006067
FY12P. Johnson
E. Solomon
1144164Thermal structure of the Cascadia Subduction Zone on the Washington MarginSCDCascadia icon-external-link Heat Flow at the Cascadia Subduction Zone• Atwater B.F., B. Carson, G.B. Griggs, H.P. Johnson, M.S. Salmi. Rethinking turbidite paleoseismology along the Cascadia subduction zone. Geology, 42, 9, 827-830 (2014). doi.org/10.1130/G35902.1

• Johnson H.P., E.A. Solomon, R.N. Harris, M.S. Salmi, R.D. Berg. Heat flow and fluid flow in Cascadia's seismogenic zone. Eos Trans., 94, 48, 457-468 (2013). doi/pdf/10.1002/2013EO480001
FY12P. Kelemen
S. Goldstein
S. Hemming
1144759Collaborative Research: Plutons as ingredients for continental crust: Pilot study of the differences between intermediate plutons and lavas in the intra-oceanic Aleutian arcSCDAlaska & Aleutian icon-external-link Origin and evolution of the lower crust in magmatic arcs and continental crust• Cai Y, M. Rioux, P.B. Kelemen, S.L. Goldstein, L. Bolge, A.R.C. Kylander-Clark. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc. EPSL, 431, 119-126 (EPSL 2015). doi.org/10.1016/j.epsl.2015.07.058

• Hacker B.R., P.B. Kelemen, M.D. Behn. Continental Lower Crust. Annu. Rev. Earth Planet. Sci. 43, 167-205 (2015). doi.org/10.1146/annurev-earth-050212-124117
FY12M. Rioux1144648Collaborative Research: Plutons as ingredients for continental crust: Pilot study of the differences between intermediate plutons and lavas in the intra-oceanic Aleutian arcSCDAlaska & Aleutian icon-external-link Origin and evolution of the lower crust in magmatic arcs and continental crust• Cai Y, M. Rioux, P.B. Kelemen, S.L. Goldstein, L. Bolge, A.R.C. Kylander-Clark. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc. EPSL, 431, 119-126 (EPSL 2015). doi.org/10.1016/j.epsl.2015.07.058
FY12A. Kent
R. Duncan
A. Grunder
1144555The explosive volcanic history of the Central Oregon Cascades: Probing the changing state of the Neogene Cascade arcSCDCascadiaExplosive pulse following the late Neogene initiation of the Central Oregon High Cascades• Pitcher B., A.J.R. Kent. Statistics and segmentation: Using Big Data to assess Cascades Arc compositional variability. (in review Chemical Geology)
FY12P. Londsdale
1144558Collaborative Research: Dating submerged continental crust beneath the Southern Gulf of California, and a synthesis of the magmatic and tectonic history of this MARGINS Focus SiteGulf of California icon-external-link 
FY12M. Grove1144392Collaborative Research: Dating submerged continental crust beneath the Southern Gulf of California, and a synthesis of the magmatic and tectonic history of This MARGINS Focus SiteGulf of California icon-external-link 
FY12D. Kimbrough1144367Collaborative Research: Dating submerged continental crust beneath the Southern Gulf of California, and a synthesis of the magmatic and tectonic history of This MARGINS Focus SiteGulf of California icon-external-link 
FY12Y. Shen1144771Developing a comprehensive model of subduction and continental accretion at CascadiaSCDCascadia icon-external-link Developing a comprehensive model of subduction and continental accretion at Cascadia
FY11J. Morgan1046795GeoPRISMS Office Support – Building beyond MARGINS
FY11M. Pritchard1049611Collaborative Research: Faulting processes during early-stage rifting: analysis of an unusual earthquake sequence in northern MalawiRIEEARSFaulting processes during early-stage rifting: analysis of an unusual earthquake sequence in northern Malawi
FY11J. Gaherty
S. Nooner
D. Shillington
1049620Collaborative Research: Faulting processes during early-stage rifting: analysis of an unusual earthquake sequence in northern MalawiRIEEARSFaulting processes during early-stage rifting: analysis of an unusual earthquake sequence in northern Malawi
FY11K. Straub1049387Collaborative Research: Reconstructing ancient passive margin dynamics by relating geomorphic and stratigraphic surfaces: a combined laboratory and field studyRIE icon-external-link Reconstructing ancient passive margin dynamics by relating geomorphic and stratigraphic surfaces: a combined laboratory and field study• Straub K.M., C.R. Esposito. Influence of water and sediment supply on the stratigraphic record of alluvial fans and deltas: Process controls on stratigraphic completeness. J. Geophys. Res. Earth Surf. 118, 2, 625-637 (2013). doi:10.1002/jgrf.20061
FY11B. Sheets1049385Collaborative Research: Reconstructing ancient passive margin dynamics by relating geomorphic and stratigraphic surfaces: a combined laboratory and field studyRIE
FY11G. Hirth
D. Goldsby
1049582Experimental Constraints on the rheology and seismicity of subducting lithosphere  and the slab-wedge interfaceSCDExperimental Constraints on the Rheology and Seismicity of Subducting Lithosphere and the Slab-Wedge Interface• Kelemen P.B., G. Hirth. Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation. EPSL. 345-348, 81-89 (2012). doi.org/10.1016/j.epsl.2012.06.018

• Proctor, B., G. Hirth. Role of pore fluid pressure on transient strength changes and fabric development during serpentine dehydration at mantle conditions: Implications for subduction-zone seismicity. EPSL. 421, 1-12 (2015).  doi.org/10.1016/j.epsl.2015.03.040
FY11D. Saffer
postdoc Sabine den Hartog
1049591MARGINS/GeoPRISMS Post-Doctoral Fellowship Research: Evolution of sediment physical properties in the Nankai Subduction Zone and implications for the updip limit of seismogenesisNankaiFriction of megathrust gouges at in-situ subduction zone conditions• Kitajima, H., D.M. Saffer. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Letters. 39, 23 (2012). doi.org/10.1029/2012GL053793

• Saffer, D.M., D.A. Lockner, A. McKiernan. Effects of smectite to illite transformation on the frictional strength and sliding stability of intact marine mudstones. Geophys. Res. Letters. 39, 11 (2012).  doi.org/10.1029/2012GL051761

• Kitajima, H., D.M. Saffer. Consolidation state of incoming sediments to the Nankai Trough subduction zone: Implications for sediment deformation and properties. G3. 15, 7 , 2821-2839 (2014). doi.org/10.1002/2014GC005360

• Saffer, D.M. The permeability of active subduction plate boundary faults. Geofluids. 15, 1-2, 193-215 (2015). doi.org/10.1111/gfl.12103
FY11M. Billen
postdoc John Naliboff
1049660Postdoctoral Fellowship: 3D numerical models of the dynamic generation of outer rise faultsHigh-resolution numerical modeling of outer-rise fault development and evolution• Naliboff, J.B., M.I. Billen, T. Gerya, J. Saunders. Dynamics of outer‐rise faulting in oceanic‐continental subduction systems. G3. 14, 7, 2310-2327 (2013). doi.org/10.1002/ggge.20155
FY11E. Syracuse
C. Thurber
1049533MARGINS: Seismic Evidence for hydration of the Central American slab: Guatemala through Costa RicaCentral America

 Extended abstracts

icon-chevron-right For NSF awards made under the GeoPRISMS Predecessor program, visit the MARGINS website.