Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) – Revealing the environment of shallow slow slip


Susan Schwartz (UC Santa Cruz), Anne Sheehan (University Colorado, Boulder), Rachel Abercrombie (Boston University)

In the last fifteen years, it has become evident that slow slip events (SSEs) are a common and important part of the subduction process. They produce millimeters to centimeters of surface displacement over days to years that can be measured by geodesy and are often accompanied by seismic tremor and earthquake swarms. Slow slip and tremor have been observed in subduction zones in Cascadia, Japan, Mexico, Alaska, Ecuador, northern Peru, Costa Rica and New Zealand.

The 2014-15 HOBITSS deployment of 24 ocean bottom pressure sensors and fifteen ocean bottom seismometers (OBSs) at the northern Hikurangi margin, New Zealand captured a M7.0 SSE. The vertical deformation data collected were used to image one of the best-resolved slow slip distributions to date, and indicated slip very close, if not all the way to the trench (Wallace et al., 2016). The Fall 2016 GeoPRISMS Newsletter reported on this experiment and how for the first time, ocean bottom pressure recorders successfully mapped a SSE displacement field (Wallace et al., 2016). The HOBITSS results were instrumental in demonstrating that Absolute Pressure Gauges are a valuable tool for seafloor geodesy. Seismologists from UC Santa Cruz, University of Colorado Boulder and Boston University are now using the seismic data collected during the same experiment to evaluate the spatiotemporal relationship between seismicity (both earthquakes and tremor) and the slow slip event and the role that seismic structure plays in controlling slip behavior. One of our primary goals is to determine if slow and fast interplate slip modes spatially overlap or are segregated.

An initial catalog of local earthquakes was constructed and relocated in a New Zealand-derived velocity model to produce a catalog of 2,619 earthquakes ranging in magnitude between 0.5 and 4.7. Locations indicate that Hikurangi seismicity is concentrated in two NE-SW bands, one offshore beneath the Hikurangi trough and outer forearc wedge, and one onshore beneath the eastern Raukumara Peninsula, with a gap in seismicity between the two beneath the inner forearc wedge. We do not find an increase in seismicity during the 2014 slow slip event, though seismicity is slightly higher in the month following the SSE. The majority of earthquakes are within the subducting slab rather than at the plate interface. The few events that locate close to the plate interface were assumed to be thrust events and used as templates in a waveform matching technique to identify similarly located earthquake swarms within the entire dataset.

Like the general seismicity increase in the month following the SSE, repeating families of interplate events (Fig. 1) also cluster in time at the end of the SSE. They are spatially concentrated within the slow slip patch and associated with a well-imaged subducted seamount (Bell et al., 2010).

Tectonic tremor was also identified toward the end and continuing after the slow slip event. Like the interplate earthquake families, tremor is also co-located with slow slip and localized in the vicinity of subducted seamounts (Fig. 2). The subsequent, rather than synchronous occurrence of tremor and interplate earthquakes and slow slip suggests that seamount subduction plays the dominant role in the stress state of the shallow megathrust. While northern Hikurangi seamounts appear to primarily subduct aseismically, their subduction may generate elevated pore-fluid pressures in accumulated underplated sediment packages and a complex, interconnected fracture network such that tremor and microseismicity occur as seismic components of seamount subduction during shallow slow slip. This study indicates that the location of subducted seamounts is strongly correlated with the distribution of SSE-associated tectonic tremor and repeating earthquakes. The seamounts appear to be responsible for slow slip, tremor, and microseismicity rupturing adjacent regions in a range of slip processes.

Ongoing work more fully utilizes the rich data set of local earthquakes and includes analysis of seismic attenuation using the body wave spectra of local earthquakes, local earthquake seismic velocity tomography, and earthquake source parameter analysis including focal mechanisms and seismic moment. Knowing the physical state of the subducting plate interface is important for the slow slip modeling, and our attenuation and velocity tomography models will be key to infer the physical properties and structure in the area where slow slip occurs. For example, recent work revealed large differences between SSE slip inversions that assume homogeneous elastic properties versus those that utilize a more realistic elastic structure (Williams and Wallace, 2015). ■

References

Bell, R., R. Sutherland, D.H.N. Barker, S. Henrys, S. Bannister, L.M. Wallace, J. Beavan, (2010), Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys. J. Int., 180(1), 34–48. doi.org/10.1111/j.1365-246X.2009.04401.x
Wallace, L.M., S.C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S., Schwartz, A.F. Sheehan, (2016), Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352(6286), 701–704. doi.org/10.1126/science.aaf2349
Williams, C.A., L.M. Wallace, (2015), Effects of material property variations on slip estimates for subduction interface slow slip events, Geophys. Res. Lett., 42(2), 1113-1121. doi.org/10.1016/j.epsl.2018.01.002

Reference information
Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) – Revealing the environment of shallow slow slip
GeoPRISMS Newsletter, Issue No. 40, Spring 2018. Retrieved from http://geoprisms.nineplanetsllc.com

IODP tackles the Hikurangi Margin of New Zealand with two drilling expeditions to unlock the secrets of slow-slip events


MGL1801 Participants – Ryuta Aral (JAMSTEC), Stephen Ball (Univ. of Wisconsin, Madison), Nathan Bangs (UT Austin), Dan Barker (GNS Science), Joel Edwards (UC Santa Cruz), Melissa Gray (Imperial College London), Shuoshuo Han (UT Austin), Harold Leah (Cardiff Univ.), Tim Reston (Univ. of Birmingham), Hannah Tilley (Univ of Hawai’i), and Harold Tobin (Univ. of Wisconsin, Madison)

When the Pacific plate slips beneath the Australian plate along the northern Hikurangi margin, the subduction megathrust does not typically generate earthquakes as it often does in subduction zones. Instead, stress accumulated on the megathrust is released within patches every 2-4 years over a period of weeks in well documented slow slip events (SSEs) (i.e. Wallace and Bevean, 2010). While SSEs are not unique to the Hikurangi margin, SSEs often occur at depths of 30-40 km down dip of the seismogenic zone. This makes them difficult to access and thus difficult to examine the physical conditions that control whether the megathrust slips quickly in regular earthquakes or instead slips slowly. However, the Hikurangi margin has documented regular patterns of SSEs that extend updip along the megathrust to unusually shallow depths of ~2 km below the seafloor. This unusually shallow setting and the well documented distribution of slip makes these SSEs accessible with geophysical tools and even drilling.

From January 6th to February 9th 2018, a team of marine geologists and geophysicists from the US, UK, Japan, and New Zealand sailed on the R/V Langseth to acquire a new 3D seismic reflection data volume across the northern Hikurangi margin offshore of the North Island of New Zealand (Fig. 1). Previous seismic surveys have imaged the subsurface structures and offered hints into the unusual megathrust slip behavior along the Hikurangi margin. Bell et al. (2010) showed large seamounts on the subducting plate that can generate thrust faults within the upper plate, and entrain fluid rich sediments and carry them below the megathrust deep into the subduction zone. It is these impacts on the shallow subduction zone that are thought to generate conditions for high fluid content along the megathrust and fluid migration pathways from the megathrust through the upper plate. It is this fluid supply and flow system that is thought to lead to high fluid pressures and control effective stresses along the megathrust, which are also considered critical controls for slip behavior (Saffer and Wallace, 2015). However, it was also evident from earlier 2D seismic images that this complex setting required 3D data to correctly image the shallow megathrust and upper plate structures. Such high resolution 3D data can map out fluid content and faults to fully characterize this system.

The NZ3D experiment was designed to acquire 3D seismic images to map reflectivity and structures, and it provided an opportunity for a novel wide-angle seismic reflection and refraction component to measure seismic velocities in unprecedented detail and in 3D using full waveform inversion (FWI). The detailed seismic velocity data will reveal rock physical properties and will complement observations of reflectivity and structural geometry seen in 3D seismic images.

In most years this large ambitious geophysical experiment would by itself be a major achievement for any given site; however, the NZ3D project was designed to contribute to larger efforts on the New Zealand primary site that included: The NSF-funded SHIRE active source experiment (Nov–Dec 2017) to examine the crustal scale structure of the Hikurangi margin using ocean bottom seismometers, onland seismic receiver stations, and 2D seismic reflection imaging (p.22); IODP drilling to recover core samples, measure physical properties, and install observatories – Expeditions 372 (Nov 2017–Jan 2018) and 375 (Mar–Apr 2018) (p.16); and other related studies.

During the Langseth cruise we surveyed an area 14 x 60 km from the trench to the shelf across the Expedition 375 drilling transect (Fig. 1). Langseth fired one of two 3,300 in3 airgun arrays every 25 m in flip-flop mode and recorded returns on four 6-km-long, 468-channel seismic streamers spaced at 150 m. We made 62 passes through the survey area, fired 145,924 shots and recorded over 5Tbytes of seismic reflection data. With calm seas during most of the 35 days at sea, few equipment issues, and very few interruptions from protected species, we acquired a high-quality seismic data volume that will enable us to examine reflectivity of the megathrust down to more than 10 km in the area of SSEs and map the geometry of faults and stratigraphic horizons. In order to acquire the data needed for FWI, in December 2017, prior to NZ3D acquisition, the R/V Tangaroa deployed a hundred ocean bottom seismometers (OBSs) provided by JAMSTEC in a randomized grid with nominal 2 x 2 km spacing (Fig. 1). Shots for FWI were also recorded on stations deployed around the Gisborne area specifically for NZ3D and stations that had been deployed initially for SHIRE and remained for NZ3D (Fig. 1). A total of almost 300 onland stations recorded Langseth shots during NZ3D. We were also able to take advantage of the close line spacing during the 3D survey to increase the resolution of multibeam bathymetry and backscatter images across the margin. These data provide some of the best detail of the northern Hikurangi margin seafloor to date.

From here, we will spend the next few years processing the 3D volume (with emphasis on water column multiple removal) and OBS data sets to produce high-quality, detailed 3D images in depth, seismic velocity data, and interpret these results in the context of new results from the coordinated projects. Structures in 3D are already emerging from preliminary results (Fig. 1) and are only going to get better. There are lots of exciting results to come for studies of slow slip along the Hikurangi megathrust. ■

References

Araki, E., D.M. Saffer, A. Kopf, L.M. Wallace, T. Kimura, Y. Machida, S. Ide, (2017), Recurring and triggered slow slip events near the trench at the Nankai Trough subduction megathrust. Science, 356, 1157-1160. doi: 10.1126/science.aan3120
Barker, D.H.N., R. Sutherland, S. Henrys, S. Bannister, (2009), Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. Geochem Geophys Geosyst, 10(2), Q02007. doi.org/10.1029/2008GC002153
Bell, R., R. Sutherland, D.H.N. Barker, S. Henrys, S. Bannister, L.M. Wallace, J. Beavan, (2010), Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys. J. Int., 180(1), 34–48. doi.org/10.1111/j.1365-246X.2009.04401.x
Chang, C., L.C. McNeill, J.C. Moore, W. Lin, M. Conin, Y. Yamada, (2010), In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures. Geochem Geophys Geosyst, 11:Q0AD04. doi.org/10.1029/2010GC003261
Davy, B., K. Hoernle, R. Werner, (2008), Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history. Geochem Geophys Geosyst, 9(7):Q07004. doi.org/10.1029/2007GC001855
Hensen, C., K. Wallmann, M. Schmidt, C.R. Ranero, E. Suess, (2004), Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology, 32(3), 201–204. doi.org/10.1130/G20119.1
Huffman, K.A., D.M. Saffer, (2016), In situ stress magnitudes at the toe of the Nankai Trough Accretionary Prism, offshore Shikoku Island, Japan. J. Geophys. Res.: Solid Earth, 121(2), 1202–1217. doi.org/10.1002/2015JB012415
Jannasch, H.W., C.G. Wheat, J.N. Plant, M. Kastner, D.S. Stakes, (2004), Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications. Limnology and Oceanography: Methods, 2(2), 102–113.
Kopf, A., G. Mora, A. Deyhle, S. Frape, R. Hesse, (2003), Fluid geochemistry in the Japan Trench forearc (ODP Leg 186): a synthesis. In Suyehiro, K., Sacks, I.S., Acton, G.D., and Oda, M. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 186: College Station, TX (Ocean Drilling Program), 1–23. doi.org/10.2973/odp.proc.sr.186.117.2003
Pecher, I.A., P.M. Barnes, L.J. LeVay, and the Expedition 372 Scientists, (2018), IODP Expedition 372 Preliminary Report, Creeping Gas Hydrate Slides and Hikurangi LWD. College Station, TX (International Ocean Discovery Program). doi.org/10.14379/iodp.pr.372.2018
Pedley, K.L., P.M. Barnes, J.R. Pettinga, K.B. Lewis, (2010), Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand. Marine Geology, 270(1–4), 119–138. doi.org/10.1016/j.margeo.2009.11.006
Peng, Z., J. Gomberg, (2010), An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci., 3(9), 599–607. doi.org/10.1038/ngeo940
Ranero, C.R., I. Grevemeyer, U. Sahling, U. Barckhausen, C. Hensen, K. Wallmann, W. Weinrebe, P. Vannucchi, R. von Huene, K. McIntosh, (2008), Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst, 9(3), Q03S04. doi.org/10.1029/2007GC001679
Saffer, D.M., L.M. Wallace, (2015), The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci., 8(8), 594–600. doi.org/10.1038/ngeo2490
Saffer, D.M., L.M. Wallace, K. Petronotis, (2017), Hikurangi subduction margin coring and observatories: unlocking the secrets of slow slip through drilling to sample and monitor the forearc and subducting plate. International Ocean Discovery Program Expedition 375 Scientific Prospectus: College Station, TX (International Ocean Discovery Program). doi.org/10.14379/iodp.sp.375.2017
Saffer, D.M., M.B. Underwood, A.W. McKiernan, (2008), Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough. Island Arc, 17(2), 208–230. doi.org/10.1111/j.1440-1738.2008.00614.x
Schwartz, S.Y., J.M. Rokosky, (2007), Slow slip events and seismic tremor at circum-Pacific subduction zones. Reviews of Geophysics, 45:RG3004. doi.org/10.1029/2006RG000208
Solomon, E.A., M. Kastner, C.G. Wheat, H. Jannasch, G. Robertson, E.E. Davis, J.D. Morris, (2009), Long-term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subducti. Earth Planet. Sci. Lett., 282, 240–251. doi.org/10.1016/j.epsl.2009.03.022
Wallace, L.M., J. Beavan, (2010), Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res.: Solid Earth, 115(B12):B12402. doi.org/10.1029/2010JB007717
Wallace, L.M., J. Beavan, R. McCaffrey, D. Darby, (2004), Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res.: Solid Earth, 109(B12):B12406. doi.org/10.1029/2004JB003241
Wallace, L.M., S.C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S.Y. Schwartz, A.F. Sheehan, (2016), Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352(6286), 701–704. doi.org/10.1126/science.aaf2349
Wallace, L.M., Y. Kaneko, S. Hreinsdottir, I. Hamling, Z. Peng, N. Bartlow, E. D’Anastasio, and B. Fry, (2017), Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat. Geosci., 10, 765–770. doi: 10.1038/ngeo3021
Wech, A.G., K.C. Creager, (2011), A continuum of stress, strength and slip in the Cascadia subduction zone. Nat. Geosci., 4(9), 624–628. doi.org/10.1038/ngeo1215

Reference information
IODP tackles the Hikurangi Margin of New Zealand with two drilling expeditions to unlock the secrets of slow-slip events
GeoPRISMS Newsletter, Issue No. 40, Spring 2018. Retrieved from http://geoprisms.nineplanetsllc.com

The NZ3D Experiment – Adding a new dimension for understanding slow slip events


MGL1801 Participants – Ryuta Aral (JAMSTEC), Stephen Ball (Univ. of Wisconsin, Madison), Nathan Bangs (UT Austin), Dan Barker (GNS Science), Joel Edwards (UC Santa Cruz), Melissa Gray (Imperial College London), Shuoshuo Han (UT Austin), Harold Leah (Cardiff Univ.), Tim Reston (Univ. of Birmingham), Hannah Tilley (Univ of Hawai’i), and Harold Tobin (Univ. of Wisconsin, Madison)

When the Pacific plate slips beneath the Australian plate along the northern Hikurangi margin, the subduction megathrust does not typically generate earthquakes as it often does in subduction zones. Instead, stress accumulated on the megathrust is released within patches every 2-4 years over a period of weeks in well documented slow slip events (SSEs) (i.e. Wallace and Bevean, 2010). While SSEs are not unique to the Hikurangi margin, SSEs often occur at depths of 30-40 km down dip of the seismogenic zone. This makes them difficult to access and thus difficult to examine the physical conditions that control whether the megathrust slips quickly in regular earthquakes or instead slips slowly. However, the Hikurangi margin has documented regular patterns of SSEs that extend updip along the megathrust to unusually shallow depths of ~2 km below the seafloor. This unusually shallow setting and the well documented distribution of slip makes these SSEs accessible with geophysical tools and even drilling.

From January 6th to February 9th 2018, a team of marine geologists and geophysicists from the US, UK, Japan, and New Zealand sailed on the R/V Langseth to acquire a new 3D seismic reflection data volume across the northern Hikurangi margin offshore of the North Island of New Zealand (Fig. 1). Previous seismic surveys have imaged the subsurface structures and offered hints into the unusual megathrust slip behavior along the Hikurangi margin. Bell et al. (2010) showed large seamounts on the subducting plate that can generate thrust faults within the upper plate, and entrain fluid rich sediments and carry them below the megathrust deep into the subduction zone. It is these impacts on the shallow subduction zone that are thought to generate conditions for high fluid content along the megathrust and fluid migration pathways from the megathrust through the upper plate. It is this fluid supply and flow system that is thought to lead to high fluid pressures and control effective stresses along the megathrust, which are also considered critical controls for slip behavior (Saffer and Wallace, 2015). However, it was also evident from earlier 2D seismic images that this complex setting required 3D data to correctly image the shallow megathrust and upper plate structures. Such high resolution 3D data can map out fluid content and faults to fully characterize this system.

The NZ3D experiment was designed to acquire 3D seismic images to map reflectivity and structures, and it provided an opportunity for a novel wide-angle seismic reflection and refraction component to measure seismic velocities in unprecedented detail and in 3D using full waveform inversion (FWI). The detailed seismic velocity data will reveal rock physical properties and will complement observations of reflectivity and structural geometry seen in 3D seismic images.

In most years this large ambitious geophysical experiment would by itself be a major achievement for any given site; however, the NZ3D project was designed to contribute to larger efforts on the New Zealand primary site that included: The NSF-funded SHIRE active source experiment (Nov–Dec 2017) to examine the crustal scale structure of the Hikurangi margin using ocean bottom seismometers, onland seismic receiver stations, and 2D seismic reflection imaging (p.22); IODP drilling to recover core samples, measure physical properties, and install observatories – Expeditions 372 (Nov 2017–Jan 2018) and 375 (Mar–Apr 2018) (p.16); and other related studies.

During the Langseth cruise we surveyed an area 14 x 60 km from the trench to the shelf across the Expedition 375 drilling transect (Fig. 1). Langseth fired one of two 3,300 in3 airgun arrays every 25 m in flip-flop mode and recorded returns on four 6-km-long, 468-channel seismic streamers spaced at 150 m. We made 62 passes through the survey area, fired 145,924 shots and recorded over 5Tbytes of seismic reflection data. With calm seas during most of the 35 days at sea, few equipment issues, and very few interruptions from protected species, we acquired a high-quality seismic data volume that will enable us to examine reflectivity of the megathrust down to more than 10 km in the area of SSEs and map the geometry of faults and stratigraphic horizons. In order to acquire the data needed for FWI, in December 2017, prior to NZ3D acquisition, the R/V Tangaroa deployed a hundred ocean bottom seismometers (OBSs) provided by JAMSTEC in a randomized grid with nominal 2 x 2 km spacing (Fig. 1). Shots for FWI were also recorded on stations deployed around the Gisborne area specifically for NZ3D and stations that had been deployed initially for SHIRE and remained for NZ3D (Fig. 1). A total of almost 300 onland stations recorded Langseth shots during NZ3D. We were also able to take advantage of the close line spacing during the 3D survey to increase the resolution of multibeam bathymetry and backscatter images across the margin. These data provide some of the best detail of the northern Hikurangi margin seafloor to date.

From here, we will spend the next few years processing the 3D volume (with emphasis on water column multiple removal) and OBS data sets to produce high-quality, detailed 3D images in depth, seismic velocity data, and interpret these results in the context of new results from the coordinated projects. Structures in 3D are already emerging from preliminary results (Fig. 1) and are only going to get better. There are lots of exciting results to come for studies of slow slip along the Hikurangi megathrust. ■

References

Bell, R., R. Sutherland, D.H.N. Barker, S. Henrys, S. Bannister, L.M. Wallace, J. Beavan, (2010), Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events, Geophys. J. Int., 180(1), 34–48. doi.org/10.1111/j.1365-246X.2009.04401.x
Saffer, D. M, L.M. Wallace, (2015), The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes, Nat. Geosci., 8, 594–600. doi:10.1038/ngeo2490
Wallace, L.M., J. Beavan (2010), Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand, J. Geophys. Res., 115, B12402. doi:10.1029/2010JB007717.

Reference information
The NZ3D Experiment – Adding a new dimension for understanding slow slip events
GeoPRISMS Newsletter, Issue No. 40, Spring 2018. Retrieved from http://geoprisms.nineplanetsllc.com

Volatile cycling through the Hikurangi forearc, New Zealand


Jaime D. Barnes (UT Austin), Jeffrey Cullen (UT Austin), Shaun Barker (Univ. of Waikato), Samuele Agostini (Istituto di Geoscienze e Georisorse), Sarah Penniston-Dorland (Univ. of Maryland), John C. Lassiter (UT Austin), Andreas Klügel (Univ. of Bremen), Laura Wallace (UT Austin & GNS Science), Wolfgang Bach (Univ. of Bremen)

Much work has focused on defining the elemental concentration and isotopic composition of subduction zone inputs (e.g., sediments, altered oceanic crust, serpentinites), as well as outputs (e.g., volcanic gases and melt inclusions), in order to assess global cycling of volatiles. However, with most work focused on outputs from the volcanic front, poor constraints on the geochemistry of forearc outputs hamper global volatile flux calculations. In fact, most global flux calculations ignore contributions from the forearc because their outputs and the subducted sources contributing to the fore-arc outputs are poorly constrained (e.g., Barnes et al., 2018). The Hikurangi margin of New Zealand has a largely subaerial forearc which hosts numerous fore-arc seeps and springs (Fig. 1). This portion of the forearc is typically submerged beneath the ocean at most other subduction zones. Easy access to fore-arc springs along the margin allows for quantification of volatile flux and sources through the shallow portion of the subduction system (< 50 km).

In addition, there are dramatic along strike variations in subduction parameters along the length of the Hikurangi margin (Fig. 1). The northern portion of the margin has a thin layer of sediments (~ 1 km thick) and many seamounts on the subducting plate, a steep taper angle (7º to 10º) for the accretionary wedge, and shallow (< 15 km depth) aseismic creep. In marked contrast, the southern portion of the margin has a thick (3 to 6 km thick) package of sediments on the incoming plate, low taper angle (4º to 6º), and undergoes stick-slip behavior (e.g., Wallace et al., 2009). Interestingly, previous studies have documented an overall decrease in the Cl, B, Br, Na, and Sr concentrations in fore-arc spring waters from the north to the south (Giggenbach et al., 1995; Reyes et al., 2010). These observations raise numerous questions, such as: the amount of slab-derived fluid component to the springs; whether fluid sources vary along the length of the margin; and particularly whether any chemical variations in the spring fluids record dehydration metamorphic reactions that may be linked to changes in slip behavior along the margin. In order to address these questions, we have sampled fluids from sixteen cold and two thermal springs from along the Hikurangi margin and analyzed them for their cation and anion concentrations, as well as their B, Li, and Cl stable isotope compositions. Because Li, Cl, and B are highly fluid-mobile elements, their incompatibility limits modification by fluid-rock interaction making them excellent tracers of fluid source.

Data show that Cl, Br, I, Sr, B, Li, and Na concentrations are high in the forearc springs, consistent with previous studies. Most of these elements show a general decrease in concentration from north to south, a high in the central part of the margin, and limited variability through time. Despite the dramatic change in concentration along the margin, there is no corresponding trend in isotopic composition. Cl and B isotope compositions are remarkably consistent along the margin, suggesting fluids dominated by seawater and sedimentary pore fluids. Lithium isotope compositions are highly variable, suggesting fluids sourced from seawater and locally modified by interaction with host rock. High Br/Cl and I/Cl weight ratios also support a dominant seawater and pore fluid source.

The decrease in the absolute volatile concentrations along the margin is therefore not due to changes in subduction parameters (e.g., convergence rate, sediment subduction) altering the fluid source along the strike. In addition, the shift in seismic behavior along the margin is not linked to a change in fluid source within the forearc region. Instead, we hypothesize that the shift in volatile concentrations along the margin is controlled by fluid flux through the upper plate, due to increasing upper plate permeability from south to north. In the northern portion of the margin, the upper plate is undergoing extension, whereas in the southern portion, the upper plate is undergoing transpression (Fig. 1) (Wallace et al., 2004). The extension in the northern section of the margin could increase the permeability of the upper plate allowing for fluid loss along normal faults, and possibly lower fluid pressure within the forearc and near the interface. In contrast, the transpressional regime in the south could decrease the permeability of the upper plate, trapping fluids and increasing fluid pressure in the upper plate (Fagereng and Ellis, 2009). This model of changing permeability from north to south explains the decrease in volatile concentrations in spring fluids along strike. In the south, trapping of expelled seawater and pore fluids in the upper plate will allow the fluids to become diluted by meteoric groundwater, but their isotopic compositions will remain unchanged. Whereas in the north, the seawater and pore fluids will be able to pass through the upper plate with less dilution by groundwater. Seismic tomographic and attenuation data also suggest that more fluids are present in the northern and central portions of the upper plate of the Hikurangi subduction zone, compared to the south (Eberhart-Phillips et al., 2017; Eberhart-Phillips et al., 2005; Eberhart-Phillips et al., 2008). Springs with the highest concentrations of volatile elements are located in regions with some of the highest seismic attenuation (which can be interpreted as abundant inter-connected fluids). It is possible that the fluid pressure conditions in the upper plate may play an important role in seismic behavior along the Hikurangi margin. Higher fluid pressures in the south suppress the transition from brittle to viscous deformation, resulting in a deeper brittle-viscous transition and the occurrence of stick-slip behavior to greater depths (Fagereng and Ellis, 2009; Wallace et al., 2012). Greater structural permeability in the northern Hikurangi margin may allow fluids to bleed off, without building significant overpressures in the forearc — this could lead to a comparatively shallower brittle to viscous transition. This work highlights the role of the upper plate tectonics and permeability in controlling the flow of fluid through the forearc and the geochemical consequences on shallow outputs through the subduction system. ■

References

Barnes, J.D., C.E. Manning, M. Scambelluri, J. Selverstone, (2018), Behavior of halogens during subduction zone processes, in Harlov, D., and Aranovich, L., eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Springer, 545-590.
Eberhart-Phillips, D., S. Bannister, M. Reyners, (2017), Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P-and S-wave attenuation. Geophys. J. Int., 211, 1054-1067.
Eberhart-Phillips, D., M. Reyners, M. Chadwick, J.M. Chiu, (2005), Crustal heterogeneity and subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand. Geophys. J. Int., 162, 270-288.
Eberhart-Phillips, D., M. Reyners, M. Chadwick, G. Stuart, (2008), Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand. Geophys. J. Int., 174, 418-434.
Fagereng, A., S. Ellis, (2009), On factors controlling the depth of interseismic coupling on the Hikurangi subduction interface, New Zealand. Earth Planet. Sci. Lett., 278, 120-130.
Giggenbach, W. F., M.K. Stewart, Y. Sano, R.L. Goguel, G.L. Lyon, (1995), Isotopic and chemical composition of solutions and gases from the East Coast accretionary prism, New Zealand. Isotope and Geochemical Techniques Applied to Geothermal Investigations. IAEA-TECDOC, 788, 209–231.
Reyes, A.G., B.W. Christenson, K. Faure, (2010), Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. J. Volcanol. Geotherm. Res., 192, 117-141.
Wallace, L.M., J. Beavan, R. McCaffrey, D. Darby, (2004), Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res.: Solid Earth, 109(B12).
Wallace, L.M., A. Fagereng, S. Ellis, (2012), Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. Geology, 40, 895-898.
Wallace, L.M., M. Reyners, U. Cochran, S. Bannister, P.M. Barnes, K. Berryman, G. Downes, D. Eberhart-Phillips, A. Fagereng, S. Ellis, A. Nicol, R. McCaffrey, R.J. Beavan, S. Henrys, R. Sutherland, D.H.N. Barker, N. Litchfield, J. Townend, R. Robinson, R. Bell, K. Wilson, W. Power, (2009), Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem Geophys Geosyst, 10, Q10006, doi:10010.11029/12009GC002610.

Reference information
Volatile cycling through the Hikurangi forearc, New Zealand
GeoPRISMS Newsletter, Issue No. 40, Spring 2018. Retrieved from http://geoprisms.nineplanetsllc.com

Probing the nature of the Hikurangi margin hydrogeologic system


Evan A. Solomon (University of Washington), Marta Torres (Oregon State University), and Robert Harris (Oregon State University)

Fluid generation, migration, and pore fluid pressure at subduction zones are hypothesized to exert a primary control on the generation of seismicity, low-frequency earthquakes, and slow slip events (SSEs) (e.g. Ranero et al., 2008; Obana and Kodaira, 2009; Saffer and Tobin, 2011; Saffer and Wallace, 2015). The SAFFRONZ (Slow-slip and fluid flow response offshore New Zealand) project addresses the GeoPRISMS Subduction Cycles and Deformation Initiative Science Plan by testing interrelationships among fluid production, fluid flow, and slow slip at the Hikurangi Margin. The recognition of dramatic changes in the along-strike distributions of SSEs and their recurrence intervals, interseismic coupling, inferred pore pressure, and other subduction-related parameters (Fig. 1) have resulted in a concerted international effort to acquire seismological, geodetic, other geophysical, and geomechanical data both onshore and offshore the Hikurangi margin. This effort includes recent scientific ocean drilling, logging, and the deployment of two subseafloor observatories during IODP Expeditions 372 and 375 (see page 16 of this issue), as well as a 3-D seismic reflection survey on the northern margin. (p. 14).

SAFFRONZ will complement and extend these efforts by providing:

A continuous two-year record of fluid flow rates and composition over the timeframe of the next expected SSE,

Information on the present background state and past locations of fluid flow and how they relate to inferred pore fluid overpressure along the plate boundary, and

Comparative geochemical and hydrologic data between the northern and southern sections of the margin.

The SAFFRONZ field program is scheduled for January 10 to February 14, 2019 on the R/V Revelle. Our field strategy employs a nested approach to constrain the margin-wide fluid flow distribution tied to estimated pore pressure evolution along the plate boundary from modeling studies and seismic attributes.

We are specifically targeting fault zones and off-fault locations between the deformation front and the shelf-break (Fig. 2). Site locations will be guided by pre-existing multi- and single-beam sonar data (including seafloor backscatter and water column indicators of gas seepage), 2D/3D seismic reflection data, and real-time water column multi-beam sonar surveys during the research expedition. Violin-bow heat flow measurements and piston coring will guide ROV Jason hydroacoustic surveys, Jason heat flow probe measurements, and the collection of push cores to further identify sites of active fluid discharge. Finally, the ROV surveys will guide the deployment of benthic fluid flow meters (Fig. 3) to generate a record of fluid flow rates and composition over a two-year period – the approximate recurrence interval for SSEs in this region. We anticipate deploying about sixteen benthic fluid flow meters, some co-located with seafloor bottom pressure recorders managed by GNS Science, during the 2019 field program.Although our focus is on the northern margin, the location of shallow SSEs and most research activity, we will also conduct ship and ROV operations and deploy a subset of fluid flow meters in the southern region of the margin.

Comparison of fluid flow pathways, fluid composition, fluid flow rates, and flow transients between the northern and southern areas will provide information on the differences in the nature of dewatering between the accretionary southern portion of the margin hosting deep SSEs and the dominantly non-accretionary northern portion with shallow SSEs. The along-strike comparison will also provide a control (reference) transect to compare regional (i.e. flow in response to SSEs in the north) to other hydrologic phenomena.

From both scientific and societal perspectives, results from this project will contribute to our understanding of fault slip behavior offshore New Zealand that have global implications for the postulated interdependence of temperature, pore pressure, fluid flow, and SSEs at subduction zones. The ability to integrate the SAFFRONZ experiment with concurrent bottom pressure recorder deployments, onshore cGPS data, IODP borehole monitoring experiments, 2D and 3D seismic reflection data, and other data to be collected along the margin in the next few years greatly enhance the outcomes of this project. The synthesis of the results from all the concurrent experiments being conducted at Hikurangi promises to be very exciting and the integration of the hydrologic data produced from this project will result in an unprecedented view of deformation and hydrological responses to slow slip at subduction zones. ■

References

Barnes, P.M., G. Lamarche, J. Bialas, I. Pecher, S. Henrys, G. Netzeband, J. Greinert, J. Mountjoy, K. Pedley, G. Crutchley, (2010), Tectonic and Geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand, Marine Geology. doi: 10.1016/j.margeo.2009.03.012
Brown, K.M., M.D. Tryon, H.R. DeShon, L.M. Dorman, S.Y. Schwartz (2005), Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone, Earth Planet. Sci. Lett., 238, 189-203.
Obana, K., S. Kodaira,(2009), Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth Planet. Sci. Lett. 287, 168–174.
Ranero, C. R., I. Grevemeyer, H. Sahling, U. Barckhausen, C. Hensen, K. Wallmann, W. Weinrebe, P. Vannucchi, R. von Huene, K. McIntosh (2008), Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis, Geochemistry Geophysics Geosystems, 9(3), Q03S04.
Saffer, D.M., H.J. Tobin, (2011), Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure, Ann. Rev. Earth Planet. Sci., 39, 157-186.
Saffer, D.M., L.M. Wallace, (2015), The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci., 8(8), 594–600.
Saffer, D.M., L.M. Wallace, K. Petronotis, (2017), Expedition 375 Scientific Prospectus: Hikurangi margin coring and observatories. International Ocean Discovery Program. doi.org/10.14379/iodp.sp.375.2017
Solomon, E.A., M. Kastner, H. Jannasch, G. Robertson, Y. Weinstein, (2008), Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope. Earth Planet. Sci. Lett. 270, 95-105.
Tryon, M.D., K.M. Brown, M.E. Torres, (2002), Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, Or, II: hydrological processes. Earth Planet. Sci. Let. 201, 541–557.
Wallace, L.M., J. Beavan, R. McCaffrey, D. Darby, (2004), Subduction zone coupling and tectonic block rotation in the North Island, New Zealand, J. Geophys. Res., 109, doi:10.1029/2004JB003241
Wallace, L.M., J. Beavan, (2010), Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand, J. Geophys Res., 115(B12402), doi:10.1029/2010JB007717.

Reference information
Probing the nature of the Hikurangi margin hydrogeologic system
GeoPRISMS Newsletter, Issue No. 40, Spring 2018. Retrieved from http://geoprisms.nineplanetsllc.com

Slow slip and future earthquake potential in New Zealand and Cascadia


Noel Bartlow (University of Missouri), Laura Wallace (UT Austin & GNS Science), Ryan Yohler (University of Missouri), and Charles Williams (GNS Science)

The New Zealand and Cascadia subduction zones are two GeoPRISMS primary sites that have captured the interest of geophysicists from around the world. Both subduction zones feature significant geological hazards, including the potential for large earthquake ruptures and tsunamis. In New Zealand, the capital city of Wellington sits directly atop a large patch of the main subduction plate interface which is frictionally locked, with the potential to rupture in future earthquakes. In Cascadia, there is also potential for a large earthquake on the main subduction interface, which may impact cities such as Portland, OR and Seattle, WA.

Both New Zealand and Cascadia also host slow slip events (SSEs). Slow slip events consist of slip on the subduction plate interface – just as would occur in an earthquake – except the slip takes place more slowly than it would during an earthquake. Now that slow slip events are widely recognized at many subduction zones, it is critical to better understand their role in the accommodation of plate motion. Many questions also exist regarding implications of slow slip for subduction zone mechanics, and the relationship between slow slip events and seismic slip events on the plate boundary.

In New Zealand, slow slip events have been shown to trigger regular earthquakes up to magnitude 6 (e.g. Wallace et al., 2017). Additionally, some evidence exists from the 2011 Tohoku-Oki Mw 9.0 earthquake (e.g. Ito et al., 2013) and the 2014 Mw 8.1 Iquique earthquake (Ruiz et al., 2014) that slow slip events may be able to trigger damaging megathrust events. Most slow slip events do not trigger earthquakes and we currently cannot differentiate slow slip events that might trigger large earthquakes from those that will not. It is possible, however, that further study will lead to methods that allow slow slip events to be used as reliable earthquake precursors.

PIs Noel Bartlow (Univ. of Missouri) and Laura Wallace (UTIG), along with collaborator Charles Williams (GNS Science New Zealand) and graduate student Ryan Yohler (Univ. of Missouri) are studying slow slip events and frictional locking in New Zealand and Cascadia.

One goal of the project is to create self-consistent catalogs of slow slip events in both subduction zones that capture the time varying behavior of slow slip, including how these events grow and decay and move along the subduction plate interface. The data used for these models consists of land-based geodetic GPS time series, and in New Zealand, we also use vertical deformation of the seafloor recorded for one slow slip event using absolute pressure sensors (Wallace et al., 2016).

Previous time varying slow slip event modeling studies usually assume a uniform, elastic half-space (e.g. Bartlow et al., 2014). These new models utilize spatially-varying elastic properties within the earth based on seismic velocity models in both New Zealand and Cascadia, calculated using the PyLith finite element code. This leads to more accurate models of slip during slow slip events, and therefore, more accurate estimates of the amount of slip taken up in slow slip as opposed to being available for release in future earthquakes. Preliminary models for both New Zealand (Williams et al., 2017) and Cascadia (Bartlow et al., 2017) were shown at the American Geophysical Union 2017 Fall meeting. Additionally, a time-dependent model incorporating both onshore GPS and offshore pressure measurements for the 2014 Gisborne, New Zealand slow slip events was shown at the meeting by graduate student Ryan Yohler (Yohler et al., 2017). This model is shown in Figure 1. This slow slip event occurred near the locations of two historical 1947 earthquakes that caused damaging tsunami waves. This is the first time that seafloor geodetic data have been used in a time-dependent deformation model.

As part of this project, a team led by Laura Wallace, including Bartlow and other collaborators, have recently reported the occurrence of a large, shallow (<15 km), two-week slow slip event at the Northern Hikurangi margin triggered dynamically by passing seismic waves from the November 2016 magnitude 7.8 Kaikōura earthquake, over 600 km away (Fig. 2; Wallace et al., 2017). Long-duration (>1 year), deep (>25 km) slow slip was also triggered at the southern Hikurangi margin (Kapiti region), and afterslip occurred on the subduction interface beneath the northern South Island of New Zealand (Fig. 1).

Triggered slow slip at southern Hikurangi is more likely due to large static stress changes induced by the Kaikōura earthquake, given that area’s closer proximity to the earthquake (Wallace et al., 2018). Prior studies had already identified cases of slow slip events triggering earthquakes, and nearby earthquakes prematurely stopping ongoing slow slip events, but these studies are the first to show that dynamic and/or static stress changes from passing seismic waves may also trigger large-scale, widespread slow slip events. We are still discovering the wealth of possible complex interactions between slow slip events and earthquakes, and what they might mean for hazards. ■

References

Bartlow, N.M., C.A. Williams, L.M. Wallace, (2017), Building a catalog of time-dependent inversions for Cascadia ETS events. In AGU Fall Meeting Abstracts.
Bartlow, N.M., L.M. Wallace, R.J. Beavan, S. Bannister, P. Segall, (2014), Time‐dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand. J. Geophys. Res.: Solid Earth, 119(1), 734-753.
Ito, Y., R. Hino, M. Kido, H. Fujimoto, Y. Osada, D. Inazu, Y. Ohta, T. Linuma, M. Ohzono, S. Miura, M. Mishina, (2013), Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics, 600, 14-26.
Ruiz, S., M. Metois, A. Fuenzalida, J. Ruiz, F. Leyton, R. Grandin, C. Vigny, R. Madariaga, J. Campos, (2014), Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201), 1165-1169.
Wallace, L.M., S. Hreinsdottir, S. Ellis, I. Hamling, E. D’Anastasio, P. Denys, (2018), Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophys. Res. Lett., 45, doi.org/10.1002/2018GL077385
Wallace, L.M., Y. Kaneko, S. Hreinsdóttir, I. Hamling, Z. Peng, N.M. Bartlow, E. D’Anastasio, B. Fry, (2017), Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat. Geosci., 10(10), 765.
Wallace, L.M., S.C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S. Schwartz, S., A.F. Sheehan, (2016), Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352(6286), 701-704.
Williams, C.A., L.M. Wallace, N.M. Bartlow, (2017), Time-dependent inversions of slow slip at the Hikurangi subduction zone, New Zealand, using numerical Green’s functions. In AGU Fall Meeting Abstracts.
Yohler, R.M., N.M. Bartlow, L.M. Wallace, C.A. Williams, (2017), Constraining slip distributions and onset of shallow slow slip in New Zealand by joint inversions of onshore and offshore geodetic data. In AGU Fall Meeting Abstracts.

Reference information
Slow slip and future earthquake potential in New Zealand and Cascadia
GeoPRISMS Newsletter, Issue No. 40, Spring 2018. Retrieved from http://geoprisms.nineplanetsllc.com

Revealing the secrets of the New Zealand GeoPRISMS Primary Site


Slow slip and future earthquake potential in New Zealand and Cascadia

Slow slip and future earthquake potential in New Zealand and Cascadia

Noel Bartlow (University of Missouri), Laura Wallace (UT Austin & GNS Science), Ryan Yohler (University of Missouri), and Charles Williams (GNS Science) The New Zealand and Cascadia subduction zones are two GeoPRISMS primary sites that have...
Probing the nature of the Hikurangi margin hydrogeologic system

Probing the nature of the Hikurangi margin hydrogeologic system

Evan A. Solomon (University of Washington), Marta Torres (Oregon State University), and Robert Harris (Oregon State University) Fluid generation, migration, and pore fluid pressure at subduction zones are hypothesized to exert a primary control...
Volatile cycling through the Hikurangi forearc, New Zealand

Volatile cycling through the Hikurangi forearc, New Zealand

Jaime D. Barnes (UT Austin), Jeffrey Cullen (UT Austin), Shaun Barker (Univ. of Waikato), Samuele Agostini (Istituto di Geoscienze e Georisorse), Sarah Penniston-Dorland (Univ. of Maryland), John C. Lassiter (UT Austin), Andreas Klügel (Univ. of ...
The NZ3D Experiment – Adding a new dimension for understanding slow slip events

The NZ3D Experiment – Adding a new dimension for understanding slow slip events

MGL1801 Participants - Ryuta Aral (JAMSTEC), Stephen Ball (Univ. of Wisconsin, Madison), Nathan Bangs (UT Austin), Dan Barker (GNS Science), Joel Edwards (UC Santa Cruz), Melissa Gray (Imperial College London), Shuoshuo Han (UT Austin), Harold Leah...
IODP tackles the Hikurangi Margin of New Zealand with two drilling expeditions to unlock the secrets of slow-slip events

IODP tackles the Hikurangi Margin of New Zealand with two drilling expeditions to unlock the secrets of slow-slip events

MGL1801 Participants - Ryuta Aral (JAMSTEC), Stephen Ball (Univ. of Wisconsin, Madison), Nathan Bangs (UT Austin), Dan Barker (GNS Science), Joel Edwards (UC Santa Cruz), Melissa Gray (Imperial College London), Shuoshuo Han (UT Austin), Harold Leah...
Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) - Revealing the environment of shallow slow slip

Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip (HOBITSS) - Revealing the environment of shallow slow slip

Susan Schwartz (UC Santa Cruz), Anne Sheehan (University Colorado, Boulder), Rachel Abercrombie (Boston University) In the last fifteen years, it has become evident that slow slip events (SSEs) are a common and important part of the subduction process....
Sizing up the Taniwha: Seismogenesis at Hikurangi Integrated Research Experiment (SHIRE)

Sizing up the Taniwha: Seismogenesis at Hikurangi Integrated Research Experiment (SHIRE)

Jeff Marshall (Cal Poly Pomona) andJessica Pilarczyk (University of Southern Mississippi) “A Live Dragon” Beneath the Sea In Māori culture, the Taniwha is a dragon-like beast that lives beneath the water, sometimes protecting seafarers, whil...
Assessing changes in the state of a magma storage system over caldera-forming eruption cycles, a case study at Taupo Volcanic Zone, New Zealand

Assessing changes in the state of a magma storage system over caldera-forming eruption cycles, a case study at Taupo Volcanic Zone, New Zealand

Kari Cooper (UC Davis), Adam Kent (Oregon State University), Chad Deering (Michigan Tech), and collaborator Darren Gravley (University of Canterbury, New Zealand) The largest volcanic eruptions are rare events but when they occur can represent a...
SISIE: South Island Subduction Initiation Experiment

SISIE: South Island Subduction Initiation Experiment

Erin Hightower (Caltech) and Brandon Shuck (UT Austin) The South Island Subduction Initiation Experiment (SISIE) was an international collaborative active-source seismic survey of the Puysegur subduction margin conducted aboard the R/V Marcus G....

ExTerra Field Institute and Research Endeavor: Western Alps, Summer 2017


Besim Dragovic (Boise State University) Paul G. Starr (Boston College)

Subduction zone field geologists are a proud bunch. In 2011, the name ExTerra (Exhumed Terranes) was coined to describe those in the GeoPRISMS community who investigate rocks exhumed from fossil subduction zones, rocks whose evolution illuminates processes otherwise hidden beneath the surface of active subduction systems (kudos to Sarah Penniston-Dorland and Maureen Feineman for the name “ExTerra”).

Traditional field studies have often been conducted by individuals or only small groups of researchers. One fundamental aspect of this project, termed the ExTerra Field Institute and Research Endeavour (or E-FIRE for short) was to conduct collaborative fieldwork to collect materials held communally, foster broad interactions through workshops, and incorporate student exchanges among research laboratories. The E-FIRE group consisted of researchers (including seven PhD students and three postdocs) from nine U.S.-based universities and research institutions, each with different analytical expertise in metamorphic petrology and geochemistry (e.g. stable isotopes, geochronology, thermodynamic modeling).

In addition, ExTerra partnered with a sister European organization, the ZIP project (Zooming In between Plates). The ZIP project, coordinated by Philippe Agard, consists of researchers from twelve universities across Europe with support from a number of different industry partners. The project has been running since 2013, with many of the twelve PhD students being in the final stage of their projects when we arrived in the field this summer.

The overall big picture of this project was to trace the cycle of rocks and fluids through the subduction process. For this, we proposed to go to the Earth’s premier example of a fossil subduction zone – the Western Alps, Europe in the summer of 2017.

Planning and logistics

Weekly Google Hangouts offered the early stage researchers an opportunity to discuss papers on Western Alps geology and conduct webinars on analytical techniques, modeling, and field observation. In addition, an important component of the E-FIRE initiative was to have open, collaborative documentation and data sharing, with the end goal of opening the complete sample and data collection to any future researchers interested in subduction zone research. Hangout sessions before fieldwork included discussion with Frank Spear about the use of MetPetDB (a global database of various metamorphic petrology data) and with members of SESAR (System for Earth System Registration) about utilizing International Geo Sample Numbers (IGSNs – unique numbers and barcodes given to each sample).

One of the first major steps in the E-FIRE project was the first joint E-FIRE-ZIP workshop/retreat held in the Marin Headlands, close to San Francisco, in December 2016. This was the first time many of us had met in person. It provided a great opportunity for everyone to get to know each other. We also got to see some of our first subduction zone rocks together during a mini fieldtrip to nearby outcrops of eclogites and blueschists of the Franciscan Complex. It was also exciting to have such a large group of young researchers, from across North America and Europe!
Much of the credit for the fieldwork planning and organization must go to the E-FIRE PI triumvirate of Matt Kohn, Maureen Feineman, and Sarah Penniston-Dorland, as well as our main European collaborators Philippe Agard, Marco Scambelluri, Othmar Müntener, Samuel Angiboust, and their students.

E-FIRE Group Fieldwork overview – 7/26/17 – 8/6/17

This would turn out to be a different field experience for many of us. At any one time, there were 25-30 of us in the group, including our European collaborators. For a majority of the time, we stayed in Italian hostels and rifugios with beautiful mountain vistas (I know what you’re thinking…rough stuff). Thankfully, it just so happens that many of the world’s premier metamorphic rocks are associated with many of the Alp’s premier mountains: the Matterhorn, the Dent Blanche, and Monviso. Lunchtime in the field would often consist of grab bags of breads, cheeses, and cured meats from the local market (don’t worry, we ate some fruits and vegetables).

After a few close scares with delayed flights, everyone arrived safely in time for our first group E-FIRE dinner in Geneva. The next morning, we headed off for our first day in the field, consisting of an introduction to Alpine geology with rapid-fire stops along the way driving from Geneva to the Aosta Valley in Italy. This part of the trip was led by Alpine geology maestro, Philippe Agard, who demonstrated an incredible ability to explain complex Alpine features whilst hand-drawing cross-sections in front of some fantastic Alpine vistas.

No trip to the Alps would be complete without a hard slog up some steep mountainous terrain and our second day in the field delivered just that! Having hiked up some 1200 m of relief (most of us still suffering from jetlag), we were rewarded with spectacular views and some equally exciting geology in the Dent Blanche area. This area is interpreted to be a well-exposed example of an ancient subduction interface, where continental material of the colliding overlying plate is juxtaposed against the lower plate of European affinity. Recent work by some of our European collaborators, led by Samuel Angiboust, has suggested that this could be one of the best natural analogues for a subduction zone interface near the base of the upper plate crust.

Our third day started with an immaculate view of Monte Cervino (or it’s more well-known German name, Matterhorn). A beautiful mountain-side trail took us up to Lago Di Cignana, an artificial lake located in Valtournenche, in the Aosta Valley. This site is most well known as an ultra-high pressure (UHP) locality, consisting of various coesite (high-pressure polymorph of quartz)-bearing eclogites and schists. Recent work has found evidence for micro-diamonds within fluid inclusions in garnet, suggesting that these rocks were buried to depths greater tha 100 km and potentially provide a unique record of processes occurring deep within the subduction zone.

The next day consisted of a transect across the Schistes Lustres – one of the most complete sections across a fossil accretionary wedge complex consisting of blueschist and eclogite facies metasediments. The fieldwork was punctuated by brief outbursts of some stormy Alpine weather (thankfully one of the only rainy days in the whole trip!).

Day 5 featured a trip to the Lanzo Massif and a shift in focus from the processes operating during Alpine orogenesis to those occurring on the seafloor, prior to subduction. In contrast to many of the Alpine ophiolites seen on this fieldtrip, the Lanzo Massif has largely escaped metamorphic overprinting. Our leader for this day, Othmar Muntener, showed us well-preserved examples of seafloor serpentinisation and discussed the evidence for Lanzo, and some other Alpine ophiolites, belonging to an ultra-slow spreading ridge system. Of particular interest to the group was discussion of evidence for subducted sub-continental lithospheric mantle that would have been exhumed to the seafloor along large-scale detachment faults as part of a slow-spreading ridge system.

For many of us, one of the highlights on the trip was the Monviso area, in the Italian Alps. The two-day trip featured a tour around one of the best exposed fragments of subducted oceanic material, interpreted as a coherent slice of the oceanic crust/mantle interface. Whilst the hiking around the area featured some fantastic vistas of Monviso and the adjacent peaks, it was perhaps equally memorable for the dense clouds that would appear out of nowhere and reduce the visibility to just a few meters. Perhaps unsurprisingly, given a group of thirty geologists easily distracted by the rocks, we managed to lose some of the group in the fog! After about a thirty-minute search, and a lot of shouting and whistling, the lost E-FIRE folks were located – already on their way to the Rifugio for an early happy hour.

After the Monviso trip, we took a field break to decompress and to discuss the nascent project ideas the students and postdocs were thinking about in the context of the sites we had visited. It was exciting to hear students bouncing ideas off each other and contemplating how each of their individual projects goals will tie into each other’s. We smell collaboration (and field boots)!
After a well-needed day of rest and relaxation, we drove east to the Ligurian Alps, with the port city of Genoa as our base of operations over the next three days. Here, we drove north, as the serpentinite guru, Marco Scambelluri, led us into the Voltri Massif. In this portion of the Western Alps, it is suggested that convergence between Europe and Apulia occurred at an ocean-ocean plate interface (as opposed to northwest at Monviso, which is suggested to be ocean-continent). We got to contemplate whether changes in plate dynamics here would have resulted in differing metamorphic conditions and preservation of buried lithologies. Our first day was an introduction to the regional geology, and a quick introduction to fieldwork closer to the Mediterranean, with temperatures at times in excess of 100˚F. Much of the terrane is heavily vegetated, so the best field exposures were in riverbeds, like those of the Gorzente River, in the Erro Tobio Unit. The Erro Tobio Unit consists of variably serpentinized ultramafic rocks, with the most striking feature in these rocks being coalescing veins of metamorphic olivine resulting from dehydration during subduction.

The next day, Marco led us to several roadside locations in the Beguia Unit of the Voltri Massif, a region of large (tens to hundreds of meters) lenses of metamorphosed gabbro in a matrix of serpentinite. It has been hypothesized that these lenses may represent a tectonic mélange or simply an extension of what we all observed earlier in the trip. The temperature that day did not let up, and hammering dense Fe-Ti meta-gabbros did not provide a break either (pun intended), but we collected some spectacular samples and witnessed Marco’s expert wielding of a sledge hammer. At the end of days like this, a cool refreshment is always welcome, as well as a nice stroll along the rocky coast of Genoa.

Small Group Fieldwork | 8/8/17 – 8/28/17

Groups of researchers went back to Monviso to collect more stunning examples of slab/mantle fluid-rock interaction, to Dent Blanche for finer-scale sampling of the subduction interface, and out by ferry to explore an extension of the high-pressure Western Alpine rock in Corsica. The authors, with a group of others, went back to the Voltri Massif for more sampling of meta-gabbros and serpentinites, but also to the Apennines, where relics of unsubducted gabbro and serpentinite are preserved. There, we experienced two firsts: tripe (with mixed responses!), and having the carabinieri (the Italian military police) called on us for hammering rocks. This time with smaller groups going back to some of the same locations we visited earlier in the trip, the focus was on more detailed sampling for individual project goals, and expanded discussion of field observations and any tectonic interpretations.

After several days in smaller teams, the E-FIRE group was re-assembled back in Geneva, Switzerland for one more day, and what could possibly beat the adventures we experienced in the field? Why, it’s sample packing! In a parking lot at the Université de Lausanne, we showed each other some of the rocks we collected for our projects, and in some cases, samples we set out to collect for each other’s projects. Samples were packed onto a pallet and wrapped like no rocks had ever been wrapped before. That night, we had one final group dinner in Geneva before we all split up again, where many were back out into field and others were off to the Goldschmidt conference in Paris.

All told, roughly 700 kg of rock was collected by the E-FIRE group during the field excursion, and shipped to Penn State University where the samples will be held in a sample repository. This is of course until we crush, pick at, dissolve, and shoot lasers at them. In all seriousness, it is safe to state that the 2017 ExTerra Field Institute and Research Endeavour was the experience of a lifetime, especially for the early stage researchers; a unique opportunity to interact and initiate collaborations with each other and our new European colleagues, observe and contemplate subduction zone processes in a classic field location, and travel through one of the most beautiful terranes on Earth.

Acknowledgments

We are grateful to Philippe Agard, Marco Scambelluri, Othmar Müntener, and Samuel Angiboust (along with other European students, postdocs, and research scientists) for their guidance in field logistics and immense knowledge of Western Alps geology. We would like to thank the principal investigators Matt Kohn, Sarah Penniston-Dorland, and Maureen Feineman for the leadership and organizational skills necessary for such a large field-based research endeavor. We finally thank W.O. Bargone for field assistance. This field institute was supported by NSF EAR-1545903 and readers like you. ■

“Report from the Field” was designed to inform the community of real-time, exciting GeoPRISMS -related research. Through this report, the authors expose the excitement, trials, and opportunities to conduct fieldwork, as well as the challenges they may have experienced by deploying research activities in unique geological settings. If you would like to contribute to this series and share your experience on the field, please contact the GeoPRISMS Office at info@geoprisms.nineplanetsllc.com. This opportunity is open to anyone engaged in GeoPRISMS research, from senior researchers to undergraduate students.
We hope to hear from you!

Reference information
ExTerra Field Institute and Research Endeavor: Western Alps, Summer 2017. B. Dragovic, P. Starr
GeoPRISMS Newsletter, Issue No. 39, Fall 2017. Retrieved from http://geoprisms.nineplanetsllc.com

Magnetotelluric and Seismic Investigation of Arc Melt Generation, Delivery, and Storage beneath Okmok Volcano


Kerry Key (Scripps Institution of Oceanography) and Ninfa Bennington (University Wisconsin-Madison)

It all sounded so easy when we were writing the proposal. Sure, we can deploy 54 seafloor magnetotelluric (MT) instruments around a remote Aleutian island, no problem, we have done lots of marine MT surveys before. Add on an array of onshore magnetotelluric and passive broadband seismic stations covering the flanks and caldera of a volcano that erupted without almost no warning back in 2008? Sure, that won’t be too hard either since we will have a helicopter transporting the field teams and science equipment, and we can base our camp at a remote cattle ranch used by previous field teams studying Okmok volcano. So we worked up a budget, wrote the proposal text and submitted it to the July 2014 target date for proposal submissions to the National Science Foundation’s GeoPRISMS program.

Fast forward to early January 2015 when we received an email from Bil Haq, then one of the two NSF Program Managers for GeoPRISMS, stating “Your proposal did well in the competition for GeoPRISMS funds and I plan to fund it at this time”.

Yes!!!!! Woohoo!!!!!! Seriously, this was good news.

Then comes the word that the field work will start in mid-June. We were supposed to get everything in place for two short cruises and three weeks of onshore field work in just a few months. Time to get moving!

The Logistics

We started a seemingly endless chain of emails and conference calls to work out the logistics for the onshore field work. We would be working out of a field camp at Bering Pacific Ranch on the abandoned WWII military base Fort Glenn, located on the eastern flank of Umnak island. Our tasks were to get a helicopter, about fifty barrels of helicopter fuel, seismometers, magnetotelluric instruments, cooking supplies and food for about 160 person-days delivered by the start of field operations around June 20th. The tiny city of Dutch Harbor, conveniently located about 100 km away on neighboring Unalaska Island, is the country’s largest fishing port by volume, so we planned to ship our stuff from the lower 48 states up to Dutch Harbor, where it would be consolidated and then shipped to Fort Glenn. Easy right?

Amazingly, this plan actually worked out. Once all the geophysical equipment, batteries, helicopter fuel, non-perishable food and cooking supplies arrived in Dutch Harbor, it was loaded onto the Island Packer, a small landing craft, and then ferried on a 60-km journey from Unalaska Island to a makeshift dock at the beach near Fort Glenn. Then two ranch hands transported it 5 km up to the field camp at the ranch.

By comparison, preparing for the marine part of the project was relatively straightforward since the Scripps lab does this routinely and all we had to do was get the marine MT equipment to the ship. By coincidence, our deployment cruise was scheduled on the RV Thompson, which happened to be passing through San Diego on its way north, so we lucked out and loaded the marine MT gear onboard for a free ride up to the Aleutians.

June 16-17, 2015 | Making it to Dutch Harbor

Dutch Harbor was also the port of departure for the marine MT deployment cruise so we flew into Anchorage and then boarded connecting flights to Dutch Harbor. While anywhere else in the US this would likely be an easy connection, flights to the Aleutian islands are unpredictable due to frequent low hanging clouds and fog. When the planes take off in Anchorage, they don’t know how the weather will be in Dutch Harbor so they load enough fuel on board to make the return trip if visibility is so bad they can’t see the Dutch Harbor runway. This was indeed the case for several of our connecting flights, and so it took a few attempts spread out over a few days for everyone to finally make it to Dutch Harbor. At the local grocery store Safeway, which was unexpectedly well stocked with a cornucopia of fresh produce, we gave the manager a lengthy shopping list of fresh produce, dairy, meat and seafood and he promised it would be delivered to the airport on the morning of June 22, where it would be loaded onto the charter flights taking us west to Fort Glenn.

June 18-21, 2015 | Deployment Cruise

We pushed off the dock around mid-day on the 18th and by 01:00 on the 19th the ship arrived at the first station, located on the northern end of the survey profile in the Bering Sea. By 10:00, we had already deployed seventeen seafloor MT receivers. The sky was filled with low hanging clouds so we couldn’t see Umnak Island, but the lack of view was made up for by the lack of wind and almost no swell – perfect conditions for the maiden marine flight of our consumer-grade drone, allowing us to capture some 4K high definition videos of ship and the science team deploying MT receivers. While waiting in port during the previous days, we had done a lot of prep work, including putting batteries in the 54 data loggers for the MT receivers, synchronizing their crystal oscillator clocks with GPS time and programming them to startup around the time we predicted they would be on the seafloor. So now for each receiver deployment, all we had to do is mount the magnetic field induction coil sensors on the receiver frame along with the two long electric dipole arms, attach the external electronic compass, plug in all the sensor cables, secure the concrete anchor strap, test the acoustic release system, test the stray-line buoy’s radio and finally attach the bright orange flag to the frame. There is a well-developed procedure for all these steps and checklist to make sure nothing is skipped, so it all goes like clockwork thanks to the careful efforts of the students, postdocs and technicians working either the noon-to-midnight or midnight-to-noon shifts (ship-time is not cheap so the vessel works 24 hours a day).

The clouds partially lifted in the late afternoon of the 19th as we entered Umnak Pass, a narrow channel that separates Umnak Island on the west from Unalaska Island on the east. The MT deployment carried on like clockwork and by the 20th we were making way into the Pacific Ocean, which was starting to kick up with strong winds and some moderate swell. We finished the last MT deployment about twelve hours ahead of schedule so we decided to use the extra time to collect high resolution multibeam bathymetry on the forearc slope before heading back to Dutch Harbor. Our journey back to port went about the northern shore of Unalaska, and with luck the clouds lifted partially to give some nice views of Mount Makushin volcano. As usual, soon after the ship tied up most of the crew and science party headed to the local bar to re-equilibrate after a few days on a dry ship.

June 21-July 8, 2015 | Onshore field work

The next phase of the project started with flights from Dutch Harbor to Fort Glenn that transported the science party, two ranch hands, and the perishable food that Safeway had just delivered. From the gravel landing strip (left over from WWII) at Fort Glenn, a ranch hand drove the science party and food up to the camp house where we would stay. The camp house was basically three trailer units arranged in a u-shape with an aluminum roof overtop and a giant garage door on the open side of the U. One unit was a cooking trailer with full kitchen and dinner area. Another was a bunk house and the third was a bathroom, shower and laundry facility. While we weren’t going to exactly be roughing it, nobody had stayed here in several years and everything was covered in mold and black volcanic dust, and the window sills were graveyards of giant fly corpses. We spent much of the first day cleaning up the place, stocking the kitchen and setting up workbenches for the geophysical equipment in the enclosed space in the middle of the three trailers. Sometime during the first day the helicopter arrived and everything was coming together for us to begin operations the next day.

Our seven-person science team would helicopter into and around Okmok volcano. Half of the crew carried out an onshore magnetotelluric survey collected in an array using a combination of long-period and wide-band MT systems, with nineteen stations within the caldera and ten stations outside. The remainder of our field team installed thirteen temporary broadband seismometers both in and around the volcano. The temporary seismic array recorded seismic data until its retrieval in summer 2016. In tandem with the Alaska Volcano Observatory’s twelve permanent seismic stations, there were twelve seismic instruments within/at the rim of the caldera and fourteen seismic instruments outside the caldera.

Both the seismic and MT teams operated in parallel so the helicopter went back and forth ferrying the teams around. That meant we always had to be prepared to be left overnight (or longer) at field stations if the fog came in and the helicopter couldn’t return to pick us up (luckily this never happened, despite a few close calls). We also had to be prepared for being chased by one or more of the ~7000 feral cattle that roam the outer flanks of the caldera. We quickly developed a protocol where after dropping off a team, the helicopter would fly in a 1-km circle around the station chasing away any nearby cattle. Despite this, there was an occasion where the seismic team had to make haste into a ravine to get away from an angry bull. While the MT systems only needed to record data for a few days and thus were all recovered by the end of the first field season, the broadband seismic systems were going to record seismic waves for the next year and would be picked up during the second field season.

July 9-14, 2015 | Recovery cruise

For the marine MT recovery cruise, we were on a different ship, the newly built RV Sikuliaq. Recovering the marine MT receivers meant driving up to them in the ship, sending an acoustic command that tells the instrument to let go of its anchor and then waiting for the instrument to rise to the sea surface. Once on the surface, the instrument’s stray line buoy radios the ship with its GPS position. The ship then drives up to the floating instrument from the downwind side and once its alongside the ship, we toss a grapnel around the stray line and use that to attach the instrument to the ship’s remotely operated crane, which then lifts it aboard. We successfully recovered all instruments except one that was deployed in a dicey location in Umnak Pass where there were strong currents that we suspect carried the instrument away after it released its anchor.

July 29 – Aug 6, 2016 | Recovery of seismic instruments

In summer 2016, we returned to Umnak Island to recover the seismic instruments. This time our operations were based on marine vessel Maritime Maid. Operations continued in a similar fashion to the previous field season with helicopter providing the team’s transportation to and from Okmok. However, this year there was an added level of excitement as take-offs and landings were carried out on the ship’s small helipad. Due to unusually cloudless blue skies and warm temperatures, we demobilized all thirteen seismic sites in a matter of several days. Amazingly, and quite happily, we found that the majority of stations were still up and running when returning to the sites for demobilization. After a rapid and successful field season, we departed from the wonderful Maritime Maid crew and made our way back home. ■

“Report from the Field” was designed to inform the community of real-time, exciting GeoPRISMS -related research. Through this report, the authors expose the excitement, trials, and opportunities to conduct fieldwork, as well as the challenges they may have experienced by deploying research activities in unique geological settings. If you would like to contribute to this series and share your experience on the field, please contact the GeoPRISMS Office at info@geoprisms.nineplanetsllc.com. This opportunity is open to anyone engaged in GeoPRISMS research, from senior researchers to undergraduate students.
We hope to hear from you!

Reference information
Magnetotelluric and Seismic Investigation of Arc Melt Generation, Delivery, and Storage beneath Okmok Volcano. K. Key, N. Bennington
GeoPRISMS Newsletter, Issue No. 38, Spring 2017. Retrieved from http://geoprisms.nineplanetsllc.com

Imaging Magma Under Mount St. Helens with Geophysical and Petrologic Methods


Carl W Ulberg1 and the iMUSH Team*

*The iMUSH team includes Geoffrey A Abers2, Olivier Bachmann3, Paul Bedrosian4, Dawnika L Blatter4, Esteban Bowles-Martinez5, Michael A Clynne, Kenneth C Creager1, Kayla Crosbie2, Roger P Denlinger⁴, Margaret E Glasgow⁶, Jiangang Han1, Steven M Hansen⁶, Graham J Hill⁷, Eric Kiser⁸, Alan Levander⁹, Michael Mann2, Xiaofeng Meng1, Seth C Moran⁴, Jared Peacock⁴, Brandon Schmandt⁶, Adam Schultz⁵, Thomas W Sisson⁴, Roque A Soto Castaneda2, Weston A Thelen⁴, John E Vidale1, Maren Wanke3

1University of Washington, 2Cornell University, 3ETH-Zurich, ⁴USGS, ⁵Oregon State University, ⁶University of New Mexico, ⁷University of Canterbury, ⁸University of Arizona, ⁹Rice University
iMUSH is funded by NSF-GeoPRISMS, NSF-Earthscope with substantial in-kind support from the USGS.

The imaging Magma Under Mount St. Helens (iMUSH) experiment aims to illuminate the magmatic system beneath Mount St. Helens (MSH) from the subducting Juan de Fuca Plate to the surface using multiple geophysical and petrologic techniques. Field work involved seventy broadband seismometers deployed from 2014 to 2016, 23 active shots set off in the summer of 2014 recorded at about 5000 sites with Texan instruments and 950 additional Nodal stations, 150 new magnetotelluric measurements, and new petrologic sampling and analysis (Fig. 1).

Figure 1. Left: Map of the active source deployment. In the summer of 2014, 23 shots were recorded by about 2500 Texan seismometers installed in two deployments, in addition to 950 Nodal seismometers. The black line shows the location of cross-sections in Figure 2. Right: Locations of permanent and temporary broadband seismometers used in the passive source experiment, magnetotelluric sites, and petrologic samples.

In June 2017, about twenty iMUSH scientists met at the USGS Cascades Volcano Observatory in Vancouver, WA, to discuss emerging iMUSH results and to integrate those results into a consistent model of the crust and upper mantle under Mount St. Helens. Some results have been published already and many more are on their way to publication.

Passive seismic techniques include local earthquake tomography, ambient noise tomography, receiver function imaging, attenuation tomography, and SKS anisotropy. Using these techniques, we can image portions of the crust and mantle from the subducting slab to the surface, at varying degrees of resolution. Principal investigators for this portion of the experiment are Ken Creager, Geoff Abers, and Seth Moran, plus several students mentioned below.

Local earthquake tomography imaging is limited to the upper 20 km of the crust. Using more than 10000 first arrival picks for P- and S-waves from 400 local earthquakes, Carl Ulberg imaged surface-mapped features such as several high-velocity Miocene plutons, and the low-velocity Indian Heaven volcanic field and Chehalis sedimentary basin. Deeper features include the low-velocity Mount St. Helens seismic zone (SHZ), and low velocities at depths of 6-15 km below sea level beneath MSH, possibly related to a shallow magma storage region that has been identified previously with seismic studies and constrained by petrology (Fig. 3; Scandone and Malone, 1985; Lees and Crosson, 1989; Waite and Moran, 2009).

Ambient noise tomography involves cross-correlating the seismic noise between all of the station pairs in the array, and inverting the phase velocity maps to obtain a 3-D shear wave model of the crust and upper mantle. Using this technique, Kayla Crosbie found a general trend of high velocities in the lower crust to the west of MSH, and lower velocities to the east. This could be related to the presence of the accreted Siletz terrane (oceanic basalt from ~50Ma) to the west, and/or high temperatures and partial melt in the lower crust to the east (Fig. 2).

Receiver functions record the arrival of reflected and converted waves from teleseismic earthquakes. This technique is useful for locating interfaces with strong velocity discontinuities, since these reflect waves efficiently. Using this technique, Michael Mann imaged the subducting Juan de Fuca slab at a depth of ~70 km beneath MSH, and ~100 km beneath Mount Adams, almost 50 km to the east. Roque Soto used teleseismic attenuation tomography to model attenuation in the area around MSH. Abe Wallace and Erin Wirth used shear wave splitting of SKS phases to infer a fast direction of anisotropy aligned NE-SW, consistent with regional trends.

The active source experiment has yielded several results including 2-D Vp and Vs profiles through MSH down to the Moho, a map of the reflectivity of the Moho beneath MSH, and details of the locations and characteristics of seismic sources beneath MSH.

Using thousands of observations of the 23 active shots, Eric Kiser and Alan Levander obtained 2-D seismic velocity profiles through MSH (Kiser et al, 2016), and are working on a 3-D inversion of the same data.

The model includes a low-velocity zone in the lower crust 10-20 km SE of MSH, hypothesized to be a potential magma storage region as magma makes its way from the mantle to be erupted at MSH. This low-Vp zone corresponds spatially with the low-Vs zone imaged with ambient noise tomography (Fig. 2). High Vp/Vs regions in the upper crust beneath MSH and Indian Heaven could correspond to areas with partial melt, at active Holocene eruptive centers. The 3-D active source seismic imaging reveals similar features in the upper 15-20 km as imaged by the local earthquake tomography (plutons, sediments, etc.).

Figure 2. Top: NW-SE cross-section through MSH and the Indian Heaven volcanic field (IH) from Kiser et al (2016), showing high Vp (H1, H2), low Vp (L1) and high Vp/Vs anomalies (F1, F4). White dots are earthquakes during the first 24 h following the 18 May 1980 eruption, red squares are deep long-period event locations since 1980, white stars are active shot locations. Bottom: Cross-section along the same NW-SE line through the ambient noise tomography Vs model. High and low velocities in the lower crust are in similar locations as the active source model. The dotted line is the location of the Moho in the upper panel.

During the active source experiment, 950 Nodal stations were deployed for two weeks on and around the edifice of MSH. Steve Hansen and Brandon Schmandt stacked these data to reveal details of the reflectivity of the Moho, the boundary at the base of the continental crust (Hansen et al, 2016). They found large amplitude reflected waves to the east of MSH but little evidence for reflected waves to the west. This indicates that there is a stronger velocity contrast between the lower crust and upper mantle to the east of MSH than to the west. This could be related to the presence of a serpentinized mantle wedge, which would lower the velocity of the upper mantle. Due to its lower temperature, this probably also precludes the possibility of magma derived from the mantle wedge directly beneath MSH. Instead, it would have to come from somewhere to the east, an idea also supported by the active seismic and noise cross-correlation results.

Using the dense instrumentation on and around MSH, seismic sources can be better-characterized as well. Deep long-period earthquakes have been observed beneath MSH since sufficient instrumentation was installed around the time of the 1980 eruption. Using cross-correlation techniques, Jiangang Han determined that almost all of these events actually occurred in the same place, a location ~5-10 km SE of MSH at a depth of 22-30 km below sea level. Margaret Glasgow, Hansen, and Schmandt worked with the Nodal data to locate and characterize an order of magnitude more shallow events than were in the Pacific Northwest Seismic Network catalog. Xiaofeng Meng and John Vidale obtained a high-resolution set of seismic locations within 5-km depth of MSH with double-difference relocations using accurate 3-D velocity models.

The iMUSH magnetotelluric experiment, led by Adam Schultz (OSU) and Paul Bedrosian (USGS), collected data at 150 sites within the broad area encompassing Mounts St. Helens, Rainier, and Adams. These data were supplemented by a denser set of data collected ~10 years previously in the immediate area around MSH (Hill et al, 2009). A primary aim of the magnetotelluric study is to obtain a more detailed image of what has been termed the Southwest Washington Cascades Conductor (Stanley et al, 1987). Three-dimensional resistivity modeling by Jared Peacock, Esteban Bowles-Martinez, Bedrosian and Schultz imaged a ring of high conductivity extending NNW from MSH, east under the Cowlitz River, south along the western edge of the Cascades arc, and west beneath Indian Heaven.

Much of the high conductivity overlaps with low velocities imaged by seismic tomography (Fig. 3). The origin of the high conductivity is somewhat enigmatic. One theory is that the high-conductivity reflects contact metamorphism of Eocene marine sediments along the margins of a large Miocene intrusion, emplaced in or near the suture zone between the Siletz terrane and the Mesozoic North American margin. That Mount St. Helens sits directly atop this conductive ring may shed light on both its unusual forearc location and predominantly dacitic composition. A more subtle conductor imaged within the lower-crust may be related to a small degree of partial melt which may in turn source surface volcanism.

Figure 3. Left: Magnetotelluric model at 7km depth, showing details of high conductivities between MSH, Mount Rainier and Mount Adams (black outline). Scale is log10 (resistivity), so red areas are highly conductive. Triangles are volcanoes. Right: Local earthquake tomography Vp model at the same depth, showing percent variation from a 1-D average velocity model, masked for areas without raypaths. Several low-Vp anomalies coincide spatially with high conductivities in the MT model (black outline shows high conductivity).

Petrologic studies conducted on rocks collected near MSH have revealed several new insights into the magmatic system. Three mafic endmembers are encountered at MSH: high-K basalts (Type 1), low-K basalts (Type 2), and arc-type basaltic andesites (Type 3). The distinct geochemical characteristics of each mafic type require variable contributions of flux and decompression melts, involving different sources in the mantle, possibly including asthenospheric upwelling through a slab tear or gap beneath northern Oregon (Obrebski et al, 2010). The preservation of their mantle signatures requires separate ascent pathways through the crust (likely along re-activated fractures) for distinct batches of basalt aside from the main plumbing system. Further, petrographic observations made by Maren Wanke, Olivier Bachmann, and Michael Clynne indicate frequent mixing of some basalt types with the silicic upper part of the system, producing magmatic cycles of basalt entraining a dacitic magma reservoir, mixing, fractionating and erupting the diverse magmas of the Castle Creek period (~1900-1700 years B.P.). However, dacites are the most abundant rock type at MSH and the eruption of basalt remains a rarity. Hydrous arc-type basaltic andesite (Type 3), presumably the most abundant type of mafic magma produced in the mantle, is likely feeding the main magmatic plumbing system to form dacites in a lower crustal mush zone, which is possibly being imaged by the active source, ambient noise, and magnetotelluric studies.
Two voluminous dacitic tephra units from MSH over the last 4 ka were also sampled and studied using near-liquidus, fO2-buffered inverse experiments over a range of pressures, temperatures and H2O concentrations (Blatter et al, 2017).

The results of these experiments indicate that the dacite liquid is generated at deep crustal pressures (700-900 MPa, ~20-35 km) and moderate temperatures (925°C), with high H2O concentrations (6-7 wt%) and high fO2 (~NNO+1.3). Mass balance calculations using the mineral and liquid compositions from the experiments indicate that crystallization of an H2O-rich basaltic andesite (similar to Type 3), or re-melting a vapor-charged hornblende gabbro can generate large quantities (~35 wt%) of hydrous dacite, implying that regular recharge of the system by H2O-rich basalts, basaltic andesites, or vapor is necessary for the persistent production of dacitic melt consistent with the eruptive history of MSH.

Figure 4. Schematic cross-section through the crust and mantle beneath MSH including a lower and upper crustal magma reservoir (dashed lines) inferred from low P-wave (Vp), S-wave (Vs) velocity anomalies (shaded areas) (Kiser et al., 2016) and the position of deep long period earthquakes (black dots). The outline of the upper crustal magma reservoir is inferred from earthquake locations of the 1980 eruptions (Scandone and Malone, 1985). Colored arrows indicate separate pathways through the crust for the different mafic endmembers: high-K basalts, low-K basalts and arc-type basaltic andesites. The serpentinized mantle wedge is inferred from seismic data of Hansen et al. (2016). Figure provided by Maren Wanke.

Several features are consistently observed in geophysical surveys and match inferences from petrological clues (Fig. 4). Local and active source tomography, place an anomalous region in the upper crust at depths of 5-15 km below sea level beneath MSH. The likely explanation for this is an upper crustal storage region for evolved magma, some of which will likely erupt at MSH in the future. In the lower crust, ambient noise tomography and reflected waves from active source tomography point towards a low-velocity region to the east or SE of MSH, which could be related to lower crustal magma storage. Magnetotelluric results are also consistent with a small degree of lower-crustal partial melt, although the spatial extent of such melt is not in complete accordance with that inferred from seismic tomography. Since MSH is located anomalously trenchward for a Cascades volcano, with a slab depth of ~70 km directly beneath MSH, an offset magma pathway is possible. Deep long-period earthquakes may indicate the presence of magmatic fluid along this pathway. Low velocities and high conductivity are observed along the SHZ, which could be related to higher temperatures and fractured rock, fluids, and/or the presence of metasedimentary rocks within the Eocene Siletz suture zone. Upper crustal features are also consistent across local, active source, and ambient noise tomography, giving us a better idea of the upper crustal structure of the region, including multiple Miocene-aged plutons and sedimentary basins. ■

References

Blatter, D.L., T.W. Sisson, and W.B. Hankins, (2017), Voluminous arc dacites as amphibole reaction-boundary liquids. Contributions to Mineralogy and Petrology, 172(5), 27.
Hansen, S.M., B. Schmandt, A. Levander, E. Kiser, J.E. Vidale, G.A. Abers, and K.C. Creager, (2016), Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nature Communications, 7, 13242.
Hill, G.J., T.G. Caldwell, W. Heise, D.G. Chertkoff, H.M. Bibby, M.K. Burgess, J.P. Cull, and R.A.F. Cas, (2009), Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nature Geoscience, 2(11), 785-789.
Kiser, E., I. Palomeras, A. Levander, C. Zelt, S. Harder, B. Schmandt, S.M. Hansen, K.C. Creager, and C. Ulberg, (2016), Magma reservoirs from the upper crust to the moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology, 44(6), 411-414.
Lees, J., and R. Crosson, (1989), Tomographic inversion for 3-dimensional velocity structure at Mount St. Helens using earthquake data. Journal of Geophysical Research-Solid Earth and Planets, 94(B5), 5716-5728.
Obrebski, M., R.M. Allen, M. Xue, and S. Hung, (2010), Slab-plume interaction beneath the Pacific Northwest. Geophysical Research Letters, 37, L14305.
Scandone, R., and S. Malone, (1985), Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. Journal of Volcanology and Geothermal Research, 23(3-4), 239-262.
Stanley, W., C. Finn, and J. Plesha, (1987), Tectonics and conductivity structures in the southern Washington Cascades. Journal of Geophysical Research-Solid Earth and Planets, 92(B10), 10179-10193.
Waite, G.P., and S.C. Moran, (2009), V-P structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography. Journal of Volcanology and Geothermal Research, 182(1-2), 113-122.

Reference information
Imaging Magma Under Mount St. Helens with Geophysical and Petrologic Methods. C. Ulberg and the iMUSH Team
GeoPRISMS Newsletter, Issue No. 39, Fall 2017. Retrieved from http://geoprisms.nineplanetsllc.com